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One area of bioinformatics that is currently attracting particular interest is
the classification of polymicrobial diseases using machine learning (ML), with
data obtained from high-throughput amplicon sequencing of the 16S rRNA
gene in human microbiome samples. The microbial dysbiosis underlying these
types of diseases is particularly challenging to classify, as the data is highly
dimensional, with potentially hundreds or even thousands of predictive features.
In addition, the imbalance in the composition of the microbial community
is highly heterogeneous across samples. In this paper, we propose a curated
pipeline for binary phenotype classification based on a count table of 16S
rRNA gene amplicons, which can be applied to any microbiome. To evaluate
our proposal, raw 16S rRNA gene sequences from samples of healthy and
periodontally affected oral microbiomes that met certain quality criteria were
downloaded from public repositories. In the end, a total of 2,581 samples
were analysed. In our approach, we first reduced the dimensionality of the
data using feature selection methods. After tuning and evaluating different
machine learning (ML) models and ensembles created using Dynamic Ensemble
Selection (DES) techniques, we found that all DES models performed similarly
and were more robust than individual models. Although the margin over other
methods was minimal, DES-P achieved the highest AUC and was therefore
selected as the representative technique in our analysis. When diagnosing
periodontal disease with saliva samples, it achieved with only 13 features
an F1 score of 0.913, a precision of 0.881, a recall (sensitivity) of 0.947, an
accuracy of 0.929, and an AUC of 0.973. In addition, we used EPheClass to
diagnose inflammatory bowel disease (IBD) and obtained better results than
other works in the literature using the same dataset. We also evaluated its
effectiveness in detecting antibiotic exposure, where it again demonstrated
competitive results. This highlights the importance and generalisation aspect of
our classification approach, which is applicable to different phenotypes, study
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niches, and sample types. The code is available at https://gitlab.citius.usc.es/
lara.vazquez/epheclass.

microbiome, phenotype classification, 16S rRNA gene, machine learning, feature
selection, ensemble-based classification

1 Introduction

One area of bioinformatics that has attracted particular interest
in recent years is the classification of diseases using machine learning
(Asgari et al,, 2018; Zhao et al,, 2021). In particular, pathologies
caused by an imbalance in the composition of the microbial
community (dysbiosis), which are more difficult to predict because
there is no specific bacterium to blame (Relvas et al., 2021).

The most commonly used genetic marker in this type of
analysis is the 16S ribosomal RNA (rRNA) gene (Rajendhran
and Gunasekaran, 2011), which is present in all bacteria and
contains both conserved and hypervariable regions. The former are
regions that are identical or similar in nucleic acids across bacterial
species, and the latter have considerable sequence diversity between
different bacterial species. The conserved regions are often used
to bind the primer pairs that allow amplification and subsequent
sequencing of part or all of the 16S rRNA gene. Meanwhile, the
hypervariable regions between the previously fixed primer pairs
provide the information needed to find, separate, and count the
different bacterial species present in the microbiome being analysed.

In the literature, 16S rRNA gene sequences are often clustered
into Operational Taxonomic Units (OTUs), which group sequences
based on a defined threshold of sequence similarity and serve
as standard units in marker gene analysis. However, OTUs have
some limitations, including limited reusability and a lack of
comprehensiveness, which can negatively impact the quality of
results. An alternative approach is to use k-mers (substrings of
nucleotide sequences of length k); however, these suffer from
poor interpretability, as individual k-mers do not carry any
inherent biological meaning. These limitations can be overcome
by using Amplicon Sequence Variants (ASVs), which are any
of the derived single DNA sequences obtained from a high-
throughput analysis (Callahan et al., 2017).

Machine learning algorithms, such as random forest (RF) or
support vector machines (SVM), and neural network algorithms,
such as multilayer perceptron (MLP), have been used in various
studies to classify patients as healthy or diseased based on their
microbiome composition (Uddin etal., 2019; Yu etal., 2022). Several
works in the literature classify periodontal disease (Lundmark et al.,
2019; Narita and Kodama, 2022; Na et al., 2020; Chen et al., 2021).
However, none of these studies employ a rigorous procedure for
making reliable and accurate predictions. Such a procedure would
require a sufficiently large sample size, data set splitting, and cross-
validation, as well as an adequate number of features to support
generalisable conclusions.

In this paper, we consider the importance of following a curated
pipeline for phenotype classification using 16S rRNA gene amplicon
count tables. Furthermore, we aim to achieve the best possible
results, ensuring reproducibility and reducing the computational
costs. We selected a wide range of popular machine learning
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algorithms, from classic to newer and more complex: k-nearest
neighbours (kNN), RE, SVM, extreme gradient boosting (XGBoost),
and MLP, and used them to build dynamic ensemble models.

2 Methods
2.1 Periodontal disease dataset

This study used a periodontal disease (PD) dataset compiled by
our research team. It was assembled from other datasets found in
the literature, considering only those that were available in public
repositories and that also had metadata associated to properly
differentiate the samples and their corresponding pathologies.
The study examines the salivary and plaque microbiota of adult
patients with varying periodontal health conditions. The V3-
V4 region of the 16S rRNA gene was targeted, and Illumina
sequencing technology was used. For a summary of the Bioprojects
used, refer to Supplementary Table S1.

This dataset comprises multiple independent studies, each with
samples containing paired-end sequences ranging from 250 to 300
base pairs (bp). We merged these sequences into contigs with a
minimum overlap of 20 bp. Samples that did not meet the minimum
number of 5,000 sequences per sample were excluded.

A total of 2,581 samples were collected from various sources.
The samples can be classified based on several variables, with the
most significant being the type of disease (periodontitis or gingivitis)
and the site of sample collection (subgingival plaque, supragingival
plaque, or saliva).

Different combinations of variable types were considered,
resulting in various subsets of the dataset. To introduce
heterogeneity, samples of periodontitis were combined with samples
of gingivitis, which is considered an early stage of periodontal
involvement. Given the importance of dental plaque in the
pathogenesis of periodontitis, the subgingival and supragingival
samples were analysed together, while the saliva samples were
studied separately. Ultimately, we generated four subsets. Two of
these subsets were fairly balanced, while the remaining two were
highly unbalanced, as shown in Table 1.

The samples undergo a quality control process using USEARCH
(Edgar, 2010). Sequences with a maximum number of expected
errors greater than one were excluded (Edgar and Flyvbjerg,
2015), as this threshold, which is based on the sum of base-wise
error probabilities, reflects overall sequence quality. In addition,
sequences that did not exceed the minimum length of 300 bp
were excluded.

Following quality control, we performed additional
processing to obtain the ASVs and their abundance
table wusing mothur (Schloss et al, 2009), which is

detailed in the Supplementary Section S1. A total of 10,577 ASVs
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TABLE 1 Subsets generated from the original periodontal disease dataset to evaluate EPheClass. Legend: Disease (P: periodontitis, G: gingivitis), #D:
number of samples affected by the disease, #Not-D: number of samples not affected by the disease.

10.3389/fbinf.2025.1514880

Subset Disease Collection site #Samples

PD_s P saliva 797 314 483
PGD_s P+G saliva 815 332 483
PD_p P plaque® 1,667 1,298 369
PGD_p P+G plaque® 1,766 1,397 369

*Subgingival + supragingival samples.

ASV abundance Data processing

table

Repeat for different target
number of features

ML algorithms |

i

Training and evaluation

Best performing model
& classification

FIGURE 1

EPheClass pipeline for ensemble-based phenotype classification from ASV abundance tables.

were identified. These tables can be found in https://github.com/
Oral-Sciences-Research-Group/Epheclass_dataset.

2.2 EPheClass phenotype classification
pipeline

The EPheClass pipeline is proposed for classifying phenotypes,
such as diseases. This pipeline, developed in Python 3.10,
is shown in Figure 1 and begins with an ASV abundance table
containing the frequencies of the ASVs in the different samples,
which are then classified into the desired categories. In this proposal,
the samples are classified as either affected by the disease (D),
or not affected by the disease (Not-D). The pipeline consists of
two main modules: data processing and training and evaluation.
The data processing step prepares the ASV abundance table for
the classification step by selecting the most relevant features to
reduce dimensionality and discard ASVs without significance. The
training and evaluation step focuses on training the tuned models
and subsequently evaluating them to propose the best ensemble
model as output.

2.2.1 EPheClass module 1: data processing

In this first module of the pipeline, shown in Figure 2, the
sequences are prepared for the classification module through six
steps: sample filtering, ASV abundance filtering, train/test data
splitting, data augmentation (optional), data transformation, and
feature selection.

In the first step, samples with low counts of ASVs are excluded,
and only those with a significant number of sequences are retained.
We chose a threshold of at least 2,500 total counts per sample. From
the initial 2,581 samples, 42 were discarded.
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In the second step, a pseudo count of 1 is added to each
value in the abundance table to correct its sparsity. Then, the
relative frequencies of the ASVs are calculated for each sample,
and the 1,500 most abundant are selected. Thus, we avoid the
instability associated with non-abundant ASVs by discarding those
with low frequencies (Jiang et al, 2021). Moreover, from a
clinical perspective, higher abundance ASVs are often considered
more relevant indicators of microbial community shifts and
disease states (Nikodemova et al., 2023).

The dataset is then split into training and test sets in a stratified
fashion to maintain the same proportions of examples in each class
as observed in the original dataset. For the training set, 70% of the
data was used. For the test set, the remaining 30% of the data was
used. These proportions were chosen considering that 10% of the
training subset should be used as the validation set during the 10-
fold cross-validation in the model’s tuning process.

Next, an optional data augmentation step is available if the
data is significantly unbalanced. Compositional CutMix (Gordon-
Rodriguez et al., 2022) was chosen as the data augmentation
algorithm because it was specifically designed for compositional
data (CoDa), such as ASV count tables. This algorithm creates
additional data points by combining pairs of training samples
from the same class using complementary subcompositions and
renormalisation. The use of cross-validation means that only
training data needs to be augmented separately in each iteration,
using a fixed random seed to ensure consistency in the augmented
data, which is then combined to form the new augmented subset.

Due to the compositional nature of the information (Gloor et al.,
2017), we can only work in the CoDa space (also known as
simplex) or transform the data into the Euclidean space using a
log ratio transformation (Aitchison, 1982). In this case, the centred
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FIGURE 2

EPheClass pipeline module 1: data processing.

log-ratio transformation (CLR) was chosen to transform each
row (sample) individually, as recommended when working with
compositional data (Quinn et al., 2019).

The training data underwent a feature selection (FS) stage
to reduce the number of features (ASVs in this case), lower
computational costs, and enhance the performance of predictive
models. Recursive Feature Elimination (RFE) was employed as the
selection method, using three different estimators to prevent any bias
in the classification algorithm: RE, SVM, and Logistic Regression
(LR). This technique iteratively removes features from the feature
set and evaluates the performance of the selected model (estimator)
on the reduced feature set. The features with the least impact on the
model’s performance are then discarded.

To ensure the extraction of the most selected and likely best
features, we chose ASVs that were selected by all three feature
selection methods. As a result, we obtained a reduced ASV
abundance table at the end of the EPheClass module 1, containing
only the most representative ASVs based on the target number
of features. As there were n different target numbers of features
evaluated, n different ASV abundance tables were obtained. These
tables were then used to determine the best classification model and
target number of features.

2.2.2 EPheClass module 2: training and
evaluation

Module 2 of the pipeline, as illustrated in Figure 3, performs
the classification and evaluation through four steps: hyperparameter
tuning, validation of individual models, creation of ensemble
models, and final training and testing of the models.

Firstly, to tackle our classification problem, we need to carry out
a process of training and evaluating different models. This should
range from traditional techniques such as kNN, RE or SVM to
more complex ones such as XGBoost or MLP. The selection of
techniques is heterogeneous due to their fundamental differences,
except for XGBoost and RF, which are both decision tree-based.
The objective is to develop an ensemble model that surpasses the
individual models and overcomes their limitations.

The initial stage involves selecting parameters for each
technique, known as hyperparameter tuning. To achieve
this, we utilised the GridSearchCV function from the Scikit-
learn library (Pedregosa et al, 2011). We exhaustively tested
various values for several parameters of each algorithm, as
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shown in the Supplementary Table S2, and then selected the best-
performing combinations using 10-fold stratified cross-validation.
We chose the most frequently tuned parameters, as well as additional
parameters that could have a significant impact on the results.

Although some subsets are more balanced than others, they
generally tend to have some degree of imbalance. Therefore, we used
the ROC AUC value, hereafter referred to simply as AUC, as the
key metric to select the best combination of hyperparameters. In
this case, both false negatives and false positives are damaging, as
the patient would be misdiagnosed and the disease ignored, or the
patient could be subjected to unnecessary treatment. As the AUC
distinguishes between positive and negative classes across multiple
classification thresholds, it was considered more appropriate for
this study.

Figure 3 shows that, after tuning the hyperparameters for
each model, we evaluated them individually using stratified 10-
fold cross-validation. Next, we employed four different Dynamic
Ensemble Selection (DES) techniques (Cruz et al., 2018b) to create
promising ensemble models. These techniques dynamically select
the best ensemble from a pool of base models for each input.
Four techniques from the DESIib Python library (Cruz et al,
2018a) were tested: Dynamic Ensemble Selection-Performance
(DES-P), Dynamic Ensemble Selection-Clustering (DES-C), k-
Nearest Oracles Eliminate (KNORA-E), and k-Nearest Oracles
Union (KNORA-U). The DES-P method selects base models that
perform better than a random classifier in a domain of competence
estimated using kNN (finding the k closest samples to the input).
The DES-C method selects base models based on their accuracy and
diversity, using the double error diversity measure. The KNORA-E
method selects base models that perform perfectly on samples in
the region of competence, reducing this region if necessary to find
perfect models. The KNORA-U method selects base models that
correctly classify at least one sample in the region of competence,
with each model being assigned a weight according to the number
of correct classifications.

Hyperparameter tuning is performed to select the optimal value
for parameter k, which determines the region of competence in
dynamic ensembles. This is done using the already tuned and pre-
trained individual models. Evaluation is then carried out using
cross-validation, and individual models and ensemble models are
finally evaluated again through training and testing processes.

Finally, overall performance was visualised using ROC AUC
plots. Statistical comparisons were then conducted using the

04 frontiersin.org


https://doi.org/10.3389/fbinf.2025.1514880
https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org

Vazquez-Gonzalez et al.

Processed ASV
abundance table

ML algorithms ||
S

10.3389/fbinf.2025.1514880

y

Training and evaluation

Hyperparameter
tuning

H Validation

Ensemble model
creation

Training and
testing

FIGURE 3
EPheClass pipeline module 2: training and evaluation.

Venkatraman test: the paired version (Venkatraman, 1996) was
used to compare models within the same data partition, while
the unpaired version (Venkatraman, 2000) was applied to assess
differences across data partitions or between class imbalance
strategies.

2.3 Application of EPheClass

2.3.1 Diagnosing periodontal disease (PD)

The PD dataset was analysed using this pipeline to ensure
the quality, robustness, and reproducibility of the results. A
series of experiments were conducted to identify the model that
would achieve the best results while prioritising a smaller number
of features.

Four subsets of the PD dataset (see Table 1) were assessed: PD_
p, PGD_p, PD_s, and PGD_s. We evaluated different numbers of
features for each subset, ranging from 2 to 15, focusing on lower
values to thoroughly test the feasibility of dimensionality reduction.
Experiments were conducted for each combination of subset and
number of features.

The EPheClass pipeline was used for each experiment. To
address the strong imbalance in the classes, data augmentation
was performed on the healthy samples of the training set for the
two plaque subsets. This was done to achieve the same number
of healthy and diseased samples. As the plaque subsets consisted
of samples from both supragingival and subgingival sites, we
separated the samples in each fold based on their collection site and
augmented them separately. Following this step, the PD_p subset
was augmented by 630 healthy samples, and the PGD_p subset
was augmented by 690 healthy samples. In the second module,
five individual models (RE, SVM, kNN, MLP, and XGBoost) were
tuned, evaluated, and used to build ensemble models using several
DES techniques. The best overall ensemble model was then selected
based on the average test AUC values over the different numbers of
features, and then it was evaluated along with the base models on
the test set.

Feature selection algorithms were applied to the training sets in
all experiments. The ASVs selected in common by all techniques
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were kept to obtain a final number of selected features (NSF)
between 2 and 15. Different target numbers of features were tested
on each method until all desired common values were found.

2.3.2 Diagnosing inflammatory bowel
disease (IBD)

A first non-curated iteration of the EPheClass pipeline was
previously used to diagnose Crohns Disease (CD) (Vizquez-
Gonzalezetal., 2023). From this initial version, the pipeline has been
improved by adapting the pre-processing of the data to take into
account its compositional nature, and by using dynamic ensemble
building strategies instead of static ones. Therefore, we additionally
applied the new, improved version of EPheClass to the diagnosis
of inflammatory bowel disease (IBD), and compared the results
obtained with those obtained by other tools employing the same
dataset but different classification approaches. For this purpose,
we used the Gevers et al. (Gevers et al., 2014) dataset. It contains
a total of 1,359 samples, of which 1,023 are from patients with
Crohn’s disease (CD), ulcerative colitis (UC), and indeterminate
Colitis (IC), and the remaining 336 are from patients without IBD
who are considered healthy individuals for the purposes of this
study. It contains 16S rRNA gene sequence data belonging to the V4
hypervariable region.

As our pipeline can classify from any type of count table, we used
the existing OTU abundance table containing 9,511 OTUs instead of
an ASV abundance table. This OTU abundance table can be found
in the QIITA database (https://qiita.ucsd.edu/) (Study ID: 1939). A
wide range of NSFs were evaluated, from 6 to 38.

2.3.3 Classifying antibiotic exposure (DA)

To demonstrate the versatility of the EPheClass
pipeline, we applied it to the DIABIMMUNE Antibiotics
Cohort (DA) (Yassour et al., 2016) to classify whether a child had
been exposed to antibiotics or not, based on OTU profiles derived
from stool samples. Microbiome samples were recorded at multiple
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time points, with sample identifiers encoding the subject and age
at the time of collection. OTU data and antibiotic metadata were
stored separately and required integration to prepare a classification-
ready dataset. A total of 1,101 samples with 3,901 OT'Us were used.
This dataset is relatively unbalanced and also benefits from data
augmentation.

We conducted experiments across feature sets ranging
from 2 to 40 OTUs, using the same feature selection and
ensemble classification strategy employed in the PD study. CLR
transformation was applied to relative abundances, and the most
informative OTUs were selected through consensus-based feature
selection. Performance was assessed using the same model tuning
and evaluation procedure as before, allowing a direct comparison
across different phenotypes.

2.3.4 Additional experimentation

To strengthen the robustness and generalisability of our findings,
we conducted a series of additional experiments on all the datasets
we had studied, to assess how sensitive our results were to key
methodological choices.

Firstly, to ensure that the results were not biased by the train-
test split, we repeated all experiments using five different randomly
generated data partitions, each created with a different random
seed, while maintaining the proportion of training, validation,
and test data.

Next, we studied the effect of feature reduction by evaluating a
large number of features, up to 1,500, to assess stability in model
performance. Target points were set around 100, 200, 400, 600, 800,
1,000, and 1,500, each with a tolerance of +30 features. Our aim was
to evaluate the potential loss of sensitivity inherent in any feature
selection process, particularly when considering the intersection of
the three methods and the impact of imposing a feature cap.

Finally, we evaluated the impact of data augmentation by
comparing it with no augmentation and downsampling of the
majority class. This study was only applied to those cases where class
imbalance was present.

3 Results
3.1 Periodontal disease (PD) dataset

Table 2 displays the target number of features required to achieve
the desired number of ASVs selected by all methods (NSF). Further
information on the contribution of each FS method to the final
selection of ASVs is provided in Supplementary Table S3.

For each experiment, we evaluated the previously listed ML
algorithms using the ASV abundance table filtered by the NSFs.
We then trained and evaluated various ensembles composed using
DES techniques. For each of the four subsets, Figure 4 displays
the AUC values obtained by evaluating all base models and
ensembles using 10-fold stratified cross-validation on the training
set. The Supplementary Material contains comprehensive score
tables (Supplementary Table S4-7) of all the evaluated models, one
for each plot in Figure 4.
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TABLE 2 Target number of features to achieve the desired final number
of features (NSF) for each periodontitis subset.

Target number of features

PD_p | PGD_p | PD_s PGD_s
2 35 20 25 20
3 40 25 30 30
4 46 45 45 50
5 47 47 50 55
6 49 50 55 60
7 50 55 57 -
8 60 65 58 65
9 65 66 59 68
10 71 67 60 70
11 72 70 75 75
12 80 76 80 80
13 85 79 83 83
14 87 80 85 85
15 91 97 90 90

*Could not find consensus of 7 features in common for all three feature selection methods
for subset PGD_s.

The first row of Figure4 presents cross-validation AUC
values for the saliva samples: one plot for periodontitis
alone (PD_s) and another for periodontitis combined with
gingivitis (PGD_s). Each plot shows the AUC values of the
base models (dashed lines) and the four ensemble methods
(solid lines) across different NSFs. Overall,
models outperform the individual models across all NSFs.
Specifically, in Figure 4A (PD_s), all ensembles achieve AUC
values above 0.95, while even the lowest-performing individual
MLP, maintains an AUC above 0.85 for all NSE
Similarly, in Figure 4B (PGD_s), ensemble models again outperform

the ensemble

model,

individual models, with their AUC values stabilising after 8
selected features.

The second row of Figure 4 shows cross-validation AUC values
for the plaque samples, one for periodontitis alone (PD_p) and the
other for periodontitis and gingivitis combined (PGD_p). As in the
saliva samples, the ensemble models are the best-performing models
for all NSFs in both cases. In Figure 4C, the scores start to drop below
7 features and increase and stabilise above 7, with AUC values over
0.95. Similar results were obtained for subset PGD_p in Figure 4D,
where ensembles performed better for larger numbers of features
with AUC values of over 0.95.

These
Venkatraman test (Venkatraman,

the
1996), evaluating pairwise

comparisons were supported with paired

differences between models for each NSE As expected, all cases
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Evolution of the AUC in relation to the number of selected features (NSF) for various models, as evaluated using 10-fold stratified cross-validation on
the training data across four different periodontitis subsets: (A) periodontitis in saliva, (B) periodontitis and gingivitis in saliva, (C) periodontitis in plaque,
and (D) periodontitis and gingivitis in plaque. The following models and ensembles were applied: RF, SVM, MLP, kNN, XGBoost, KNORA-E, KNORA-U,

DES-P, and DES-C..

showed significant differences between the ensembles and the
individual models. A summary table of these comparisons is
provided in the Supplementary Table S13.

To determine the optimal model for each subset, we evaluated
the base models and ensembles using real, previously unseen data
to form the test set. The AUC values obtained with each model were
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averaged over the different numbers of features. Table 3 displays the
results of the ensembles for all metrics used to evaluate the models,
including the F1 score (f1), precision (p), recall (r), accuracy (acc),
and the area under the ROC curve (roc_auc). The full version of this
table, including the averaged test set AUC values of the base models,
can be found in Supplementary Table S8.
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TABLE 3 Evaluation metrics used for the ensembles: F1 score (f1), precision (p), recall (r), accuracy (acc), and area under the ROC curve (roc_auc). The
test set scores of the four periodontitis subsets were averaged over the different numbers of features, ranging from 2 to 15.

Subset Algorithm fl p r | acc | roc_auc
DES-C ensemble 0.885 | 0.869 | 0.902 | 0.908 0.964
DES-P ensemble 0.891 0.874 0.908 0913 0.966
PD_s
KNORA-E ensemble 0.878 | 0.871 | 0.885 | 0.903 0.964
KNORA-U ensemble 0.890 | 0.875 | 0.907 | 0912 0.963
DES-C ensemble 0.867 | 0.834 | 0.905 | 0.891 0.959
DES-P ensemble 0.871 | 0.847 | 0.897 | 0.896 0.961
PGD_s
KNORA-E ensemble 0.868 | 0.841 | 0.897 | 0.893 0.959
KNORA-U ensemble 0.874 | 0.850 | 0.900 | 0.898 0.960
DES-C ensemble 0.876 | 0.876 = 0.876 | 0.808 0.834
DES-P ensemble 0.877 | 0.885 | 0.869 | 0.810 0.838
PD_p
KNORA-E ensemble 0.878 0.884 0.873 0.813 0.837
KNORA-U ensemble 0.875 | 0.887 | 0.865 | 0.810 0.839
DES-C ensemble 0.876 | 0.892 | 0.862 | 0.809 0.823
DES-P ensemble 0.875 | 0.903 | 0.849 | 0.809 0.824
PGD_p
KNORA-E ensemble 0.877 | 0.895 | 0.861 | 0.810 0.819
KNORA-U ensemble 0.874 | 0.905 | 0.847 | 0.808 0.825

Based on the results of the test set, the ensemble techniques
demonstrated highly similar performance, with a maximum
difference of just 0.06 in the AUC values. These comparisons
were supported by the Venkatraman paired test (Venkatraman,
1996). Evaluating pairwise differences between models for each NSE,
only a small proportion of model comparisons showed statistically
significant differences, averaging around 20%. This means that, out
of all 1,660 model comparisons performed across different NSFs
and subsets in the test set, only about 20% indicated statistically
significant differences. A summary table of these comparisons is
provided in the Supplementary Table S9.

Given these minor differences, DES-P was selected as the
reference ensemble method, as it consistently achieved the highest
AUC values across most subsets. For PD_s, DES-P obtained an F1
score of 0.891, precision of 0.874, recall of 0.908, accuracy of 0.913,
and an AUC of 0.966. For PGD_s, DES-P achieved an F1 score of
0.871, precision of 0.847, recall of 0.897, accuracy of 0.896, and AUC
0f 0.961. For PD_p, DES-P recorded an F1 score of 0.877, precision
0f 0.885, recall of 0.869, accuracy of 0.810, and AUC of 0.838. Finally,
for PGD_p, DES-P reached an F1 score of 0.875, precision of 0.903,
recall of 0.849, accuracy of 0.809, and AUC of 0.824.

In Figure 5, the test set AUC values for the base techniques and
ensembles are presented. The first row displays two plots for the
saliva samples, one for periodontitis alone (PD_s) and the other for
periodontitis and gingivitis (PGD_s). The Supplementary Material
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contains comprehensive score tables (Supplementary Table S10-13)
of all the evaluated models, one for each plot in Figure 5.

Figure 5A (PD_s) and Figure 5B (PGD_s) show that, while
ensembles and individual models achieved similar AUC values, the
ensemble presented greater stability across the range of selected
features and maintained higher AUC values even with fewer
features. The second row of Figure 5 presents two plots for the
plaque samples: one for periodontitis alone (PD_p) and the other
for periodontitis combined with gingivitis (PGD_p). As seen for
saliva, ensembles and individual models achieved similar AUC
values, but the ensemble presented greater stability across the
different NSFs. However, in both plaque subsets, the scores begin
to drop below 8 features, but remain stable and slightly increase
above this value.

Overall, the results indicate that the ensembles performed
considerably better in cross-validation results (training set) and were
more stable than the individual models with the test set. Notably, the
periodontitis samples alone performed similarly to the combination
of periodontitis and gingivitis samples. As for the plaque subsets,
which were twice the size of the saliva subsets, the ensembles tended
to enhance the results for a larger number of features. In this case,
the samples of periodontitis alone also showed similar results to the
samples of both periodontitis and gingivitis combined.

Table 4 presents the analysis of the performance of various
feature numbers on the test set using the reference ensemble, DES-P,
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Evolution of the AUC in relation to the number of selected features (NSF) for model comparison across four different periodontitis subsets: (A)
periodontitis in saliva, (B) periodontitis and gingivitis in saliva, (C) periodontitis in plaque, and (D) periodontitis and gingivitis in plaque. Results for RF,
SVM, MLP, kNN, XGBoost, and DES-P for each subset were obtained using the test set data.

for all subsets. The three best-performing models were selected for
each subset based on the AUC values.

We can observe that there is a minimal variation in the
AUC between the three best, with differences of only up to
0.006, indicating great consistency and stability in classification
performance. Thus, we decided to select the best model based
on the NSE prioritising small numbers of features. As such, the
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DES-P ensemble achieved the best performance using 13 features
for PD_s, 9 features for PGD_s, 13 features for PGD_p, and 13
features for PD_p.

As outlined in Section 2.3.4, to further evaluate the results,
these experiments were repeated for five different data partitions.
In most cases, the unpaired Venkatraman test (Venkatraman, 2000)
showed no statistically significant differences between the partitions.
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TABLE 4 F1 score (f1), precision (p), recall (r), accuracy (acc), and area under the ROC curve (roc_auc) for the reference ensemble, and its performance
with different numbers of features with the test set for each periodontitis subset. Only the three best number of features are shown, ordered per subset
from lowest to highest NSF.

Subset Algorithm roc_auc
13 0913 | 0881 | 0947 = 0.929 0.973

PD_s DES-P 14 | 0903 | 0913 0894 0925 0.978
15 | 0898 | 0903 | 0894 0921 0.974

9 | 0854 | 0837 | 0872  0.883 0.958

PGD_s DES-P 12 | 0873 | 0835 0915 | 0.895 0.959
14 | 0867 & 0833 | 0904 0.891 0.957

13 | 0903 | 0918 | 0.889 = 0.852 0.897

PD_p DES-P 14 | 0913 0924 | 0902 | 0.867 0.903
15 | 0904 | 0909 & 0899 = 0.852 0.901

13 | 0899 0927 | 0873 | 0.846 0.895

PGD_p DES-P 14 | 0907 0933 | 0.882 | 0.857 0.895
15 | 0913 | 0929 | 0897 = 0.865 0.897

This indicates that performance was generally consistent regardless
of the specific train-test split. Specifically, when evaluating the
test sets, the different partitions within each subset yielded highly
consistent results, with similarity across seeds exceeding 90%. More
information on Supplementary Table S14.

Additionally, we evaluated the impact of data augmentation.
The results obtained in the plaque subsets with augmentation
were compared to those obtained with no augmentation and with
downsampling of the majority class. The unpaired Venkatraman
test revealed no statistically significant differences among the three
strategies. This suggests that the models can generalise effectively
even when trained on unbalanced data, likely due to the inherent
distinctiveness of the classes. However, data augmentation is still
standard practice for addressing class imbalance in predictive
modelling. As it does not negatively impact performance, its use is
recommended to ensure methodological rigour (Kuhn and Johnson,
2013). More information on Supplementary Table S15, 16.

Furthermore, we evaluated larger numbers of features ranging
from 100 to 1,500 to assess stability in model performance.
We observed that, the ROC AUC
stabilises for both the cross-validation and test results. The
plots corresponding to these larger feature numbers are
available in the Supplementary Figures S1, 2.

for over 100 features,

Lastly, it is of interest to analyse the specific ASVs that
were involved in the classification. To accomplish this, the
taxonomy of each ASV was obtained and compared among the
four subsets. Table 5 illustrates that certain features are duplicated
between the saliva subsets (with and without gingivitis), as well as for
the plaque subsets. Additionally, it was found that feature ASV00242
is significant for PD_s, PGD_s, and PGD_p, which corresponds
to the bacterial species Bacteroidaceae [G-1], bacterium_HMT272.
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The study’s findings indicate that the genus Streptococcus is present
in all subsets.

3.2 Inflammatory bowel disease (IBD)
dataset

For IBD, Supplementary Table S17 shows the target number of
features required to achieve the desired number of OTUs selected
by all methods (NSF).

Figure 6 shows the AUC values after applying EPheClass to the
IBD dataset. The Supplementary Material contains comprehensive
score tables (Supplementary Tables S18,19) of all the evaluated
models, one for each plot in Figure 6. Specifically, Figure 6A
shows that the ensembles perform significantly better than the
base models with cross-validation, while performing similarly to
each other. Figure 6B shows that the ensembles and base models
perform comparably on the test set, performing worse with fewer
numbers of features, but more stable and slightly better for
larger numbers.

These comparisons were also supported by the paired
Venkatraman test (Venkatraman, 1996). As expected, cross-
validation revealed significant differences between the ensembles
and the individual models. With the test set, however, only a small
proportion of 22% of the 300 model comparisons across different
NSFs showed statistically significant differences. A summary table
of these comparisons is provided in the Supplementary Table S20.

Table 6 displays the averaged test set results of the ensembles
for all metrics used to evaluate the models. The AUC values
obtained with each model have been averaged over the different
numbers of features. The full version of this table, including
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TABLE 5 ASVs used in the best model for each periodontitis subset, including their taxonomy.

10.3389/fbinf.2025.1514880

PD_s PGD_s PD_p PGD_p Genus Species
ASV02511 v Actinomyces sp.HMT172
ASV01745 v Prevotella melaninogenica

ASV00242 v v v Bacteroidaceae [G-1] bacterium_HMT272

ASV00195 v v Treponema unclassified

ASV00121 v v Streptococcus unclassified

ASV00085 v Streptococcus unclassified

ASV00027 v v Streptococcus vestibularis

ASV00015 v v Tannerella forsythia

ASV00006 v Rothia aeria

ASV00005 v Veillonella dispar

ASV00564 v Haemophilus sputorum

ASV00643 4 v Actinomyces sp.HMT169

ASV00155 v Streptococcus unclassified

ASV01554 v Veillonella rogosae

ASV00036 v unclassified Saccharibacteria (TM7) [F-1] unclassified

ASV00559 %4 Butyrivibrio sp.HMTO080

ASV01577 v v Cardiobacterium hominis

ASV01534 v Streptococcus oralis_subsp.dentisani_clade_058

ASV01025 v Lactobacillus ultunensis

ASV00929 v Porphyromonas catoniae

ASV00721 v Cutibacterium acnes

ASV00650 v v unclassified Saccharibacteria (TM7) [F-1] unclassified

ASV00380 v v Streptococcus unclassified

ASV00233 v Haemophilus sp.HMTO036

ASV00206 v Actinomyces massiliensis

ASV00189 v v Peptostreptococcaceae [XI][G-6] nodatum

ASV00108 v v Pseudomonas fluorescens

ASV00030 v Fusobacterium unclassified

ASV01669 v Leptotrichia wadei

ASV01356 4 Rothia dentocariosa

ASV01320 v Veillonella unclassified

ASV01234 v Cupriavidus gilardii

(Continued on the following page)
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TABLE 5 (Continued) ASVs used in the best model for each periodontitis subset, including their taxonomy.
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FIGURE 6

DES-P, and DES-C.

Evolution of the AUC as a function of the number of selected features (NSF) for different models applied to the IBD dataset. The models were analysed
using (A) cross-validation and (B) the test set. The models and ensembles used were RF, SVM, MLP, kNN, XGBoost, KNORA-E, KNORA-U,

PD_s ‘ PGD_s ‘ PD_p PGD_p Genus Species
ASV00793 v Peptostreptococcaceae [XI][G-6] minutum
ASV00213 v Mycoplasma faucium
ASV01679 v Veillonella unclassified
ASV00199 v Corynebacterium durum
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(B) test set

the averaged test set AUC values of the base models, can
be found in Supplementary Table S21. It shows that the ensembles
perform similarly to each other in terms of AUC value, with a
difference of only 0.017. Due to the lack of significant differences,
we selected DES-P as the reference ensemble, as it had the highest
AUC on average. The DES-P ensemble achieved an F1 score of 0.854,
a precision of 0.865, a recall of 0.844, an accuracy of 0.783, and an
AUC of 0.809.

Table 7 shows the results of analysing the performance of
different numbers of features on the test set using the selected
ensemble, DES-P. As there was very little variation in the AUC
between the three best models, regardless of the NSE the model with
the fewest features was chosen. Consequently, the DES-P ensemble
performed best with just 26 features.

The additional experiments confirmed the same conclusions
as in the PD analysis, showing consistent performance with no
statistically significant differences for different data partitions
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(Supplementary Table S22) and for different class imbalance
management strategies (Supplementary Table §23).

As with the PD dataset, we evaluated larger numbers
of features from 100 to 1,500 to assess stability in model
performance. We observed that, for over 100 features, the ROC
AUC stabilises for both the cross-validation and test results.
The plots corresponding to these larger feature numbers are
available in the Supplementary Figure S3.

3.3 Antibiotics exposure (DA) dataset

Figure 7 shows the AUC values obtained by applying EPheClass
to the antibiotics exposure dataset. As with the other cohorts, we
evaluated model performance across different numbers of selected
features (NSF), ranging from 2 to 40. Detailed score tables for each
evaluated model are provided in Supplementary Table $24, 25.
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TABLE 6 Evaluation metrics used for the ensembles: F1 score (f1), precision (p), recall (r), accuracy (acc), and area under the ROC curve (roc_auc). The
test set scores of the IBD dataset were averaged over different numbers of features, ranging from 6 to 38.

Dataset Algorithm fl p r | acc | roc_auc
DES-C ensemble 0.857 0.835 0.880 0.778 0.792
DES-P ensemble 0.854 = 0.865 0844 0783 0.809
IBD
KNORA-E ensemble 0.855 0.850 0.860 0.780 0.797
KNORA-U ensemble 0.859 0.869 0.850 0.790 0.802

TABLE 7 F1score (f1), precision (p), recall (r), accuracy (acc), and area
under the ROC curve (roc_auc) for the best algorithm on average, DES-P,
and its performance with different numbers of features on the test set
for the IBD dataset. Only the three best number of features are shown,
with a small number ordered from lowest to highest NSF.

Dataset NSF fl p r acc roc_auc
26 | 0866 @ 0.890 | 0844 | 0.804 0.859

‘ IBD 34 | 0885 0883 | 0886 | 0.826 0.863
‘ 38 | 0884 0899 | 0870 | 0.828 0.871

Figure 7A shows that the ensemble models consistently
outperform the base classifiers under cross-validation. In
contrast, shows that performance on the test

set is more variable, especially for very small feature sets.

Figure 7B

However, performance stabilises with more features. The paired
Venkatraman test (Venkatraman, 1996) revealed statistically
significant differences between the ensembles and individual
models in nearly all cross-validation cases. On the test set,
however, only a minority of comparisons showed significant
differences.

Table 8 reports the averaged test performance for the ensemble
models across all tested feature sizes. DES-P achieved the highest
average AUC and was thus selected as the reference model
for further analysis. The full version of this table, including
the averaged test set AUC values of the base models, can
be found in Supplementary Table S26.

Table 9 summarises the top three performing feature counts
on the test set using the DES-P ensemble. As there was very
little variation in the AUC between the three best models,
regardless of the NSE the model with the fewest features
was chosen. Consequently, the model performed best with just
22 features, demonstrating the effectiveness of dimensionality
reduction.

As in the other datasets, we also explored larger feature sizes
(from 100 to 1,500) and found that both cross-validation and test
AUC stabilised beyond approximately 100 features. Full plots are
available in the Supplementary Figure S4.

The main goal for the antibiotic exposure dataset was to
demonstrate the versatility of the pipeline. Therefore, no additional
analyses on data partitions or the impact of augmentation were
performed, as the results obtained with previous evaluations
provided enough information.
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4 Discussion and conclusion

This work proposes a curated pipeline for classifying phenotypes
with 16S rRNA gene sequenced samples. The pipeline promotes
reproducibility and reduces computational costs through feature
selection. The ensemble models achieved the best results for all
datasets and subsets, based on a trade-off between high scores and
low target number of features, as shown in Figure 4.

This evaluation is based solely on objective data, using the AUC
value plots, the paired and unpaired Venkatraman tests, and the
comparison of the multiple performance metrics.

4.1 Periodontal disease (PD) dataset

Several works in the literature have addressed the prediction of
periodontal disease in the oral cavity. However, as shown in Table 10,
they have not followed a rigorous procedure to perform a reliable
and accurate prediction. Failure to meet the basic requirements
for building adequate predictive models, including sufficiently
large sample size, data set splitting and cross-validation, and an
adequate number of features, means that the results cannot be
considered valid (Kuhn and Johnson, 2013), making them unreliable
and incomparable to ours.

When constructing predictive models, it is crucial to use
sufficiently large and balanced datasets to enable proper learning and
generalisation. Table 10 shows that the works mentioned either used
highly unbalanced data (Narita and Kodama, 2022; Na et al., 2020)
or datasets that were not large enough (Lundmark et al., 2019; Narita
and Kodama, 2022; Chen et al., 2021). EPheClass utilises considerably
larger datasets (314P - 483H for saliva and 1298P - 999H for plaque)
and even performs data augmentation to ensure class balance.

The relevance of the number of features used should not be
overlooked, as an excessive amount can result in overly complex
models. None of the studies provided a clear indication of the
number of features used (Lundmark et al., 2019; Narita and Kodama,
2022; Chen et al., 2021; Na et al., 2020). However, Na et al. (2020)
reported that they performed feature selection, which resulted in
improved outcomes. In contrast, EPheClass employs between 2 and
15 features, with the optimal score achieved using 13 features for
saliva and 13 for plaque.

To ensure reliable results and avoid overfitting, models must
undergo evaluation through cross-validation and the use of real,
unseen data. Neither Lundmark et al. (2019) nor Narita and
Kodama (2022) employed cross-validation or divided the dataset
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FIGURE 7

Evolution of the AUC as a function of the number of selected features (NSF) for different models applied to the DA dataset. Models were analysed using
(A) cross-validation and (B) the test set. Models included RF, SVM, MLP, kNN, XGBoost, KNORA-E, KNORA-U, DES-P, and DES-C.
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TABLE 8 Evaluation metrics used for the ensembles: F1 score (f1), precision (p), recall (r), accuracy (acc), and area under the ROC curve (roc_auc). The
test set scores of the DA dataset were averaged over different numbers of features, ranging from 2 to 15.

Dataset Algorithm ‘ fl p r ‘ Elelel ‘ roc_auc
DES-C ensemble 0.686 | 0.684 = 0.690 | 0.756 0.820
DES-P ensemble 0683 = 0694 0673 @ 0.760 0.831
DA
KNORA-E ensemble 0.687 = 0684 = 0692 | 0757 0.823
KNORA-U ensemble 0.694 = 0699 = 0689 | 0.766 0.826

TABLE 9 F1 score (f1), precision (p), recall (r), accuracy (acc), and area
under the ROC curve (roc_auc) for the best algorithm on average, DES-P,
and its performance with different numbers of features on the test set
for the DA dataset. Only the three best number of features are shown,
ordered from lowest to highest NSF.

Dataset NSF acc  roc_auc
22 | 0814 | 0817 0811 0858 0.923

‘ DA 31 | 0865 @ 0872 | 0858 | 0.897 0.942
‘ 40 | 0858 0858 | 0858  0.891 0.943

into training and testing sets. Na et al. (2020) exclusively employed
cross-validation, while Chen et al. (2021) utilised only one training
set and one test set. In contrast, EPheClass performs both data
splitting and cross-validation. To make valid comparisons between
studies, it is important to ensure that they meet these minimum
criteria.
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The studies achieved high scores, with Lundmark et al. (2019)
obtaining an accuracy of 79.52%, Narita and Kodama (2022) with a
higher accuracy of 88.7%, a recall of 67%, precision of 80% and an F1
score of 72.7%, Na et al. (2020) with a high F1 score of 90.5% and an
accuracy of 85.3%, and Chen et al. (2021) with a high AUC 0f 91.8%.
However, as these studies do not meet the basic criteria mentioned
earlier, their scores cannot be directly compared to ours.

Furthermore, Chen etal. (2021) achieved a higher AUC by using
a periodontitis-specific index on subgingival samples, which is not
applicable to other pathologies and mixes features from different
regions of the 16S rRNA gene. In contrast, EPheClass can predict any
polymicrobial pathology. Our pipeline meets the basic conditions
and achieves with DES-P for the PD dataset an average test AUC of
0.931, an F1 score of 0.892, a precision of 0.891, a recall of 0.895, and
an accuracy of 0.903, using only 9 to 13 selected features.

In our PD dataset (Figures4, 5), saliva subsets with and
without gingivitis (PGD_s vs PD_s) performed similarly, as did
plaque subsets (PGD_p vs PD_p). Although gingivitis, which is
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TABLE 10 Comparison of EPheClass with other works diagnosing periodontal disease. P, periodontitis; H, healthy; NSF, number of selected features; DS,
Data split; CV, cross-validation.

Collection site  Dataset size NSF DS and CV fl p ‘ r ‘ acc  roc_auc
Lundmark et al. (2019) Saliva 66P - 48H Unspecified No - - - 79.52% -
Narita and Kodama (2022) Saliva 12P - 41H Unspecified No 72.7% 80% 67% 88.7% -
Na et al. (2020) Supragingival 210P - 62H Unspecified Only CV 90.5% - - 85.3% -
Chen et al. (2021)* Subgingival 123P - 96H Unspecified Only DS - - - - 91.8%
Saliva 314P - 483H 13 Yes 91.3% 88.1% 94.7% 92.9% 97.3%
EPheClass (ours)
Plaqueb 1298P - 369H¢ 13 Yes 90.3% 91.8% 88.9% 85.2% 89.7%

*Model specific for supragingival periodontitis, not generalizable.
"Subgingival + supragingival samples.
“Size of the original dataset. An additional 630 augmented healthy samples were added to the training set.

recognised as an early stage of periodontal involvement, adds  (2023) built graphs, considering each metagenomic sample as a node
heterogeneity and classification difficulty, models generalise well  in the graph and capturing the relationship between the samples
across all subsets. Moreover, differences in overall performance can  using a proximity measure, and used them as input for a boosting
be noted depending on the site of sample collection. Saliva samples ~ GraphSAGE model that predicts the status of a sample as sick
yielded better results than plaque, especially with fewer features  or healthy.
(Figures 4, 5). Specifically, DES-P reached an AUC of 97.3% in saliva These tools proposed in the literature achieve results that, in
samples and 89.7% in plaque samples, using only 13 features. some cases, seem comparable to or even surpass our own. However,
Therefore, it appears that saliva samples contain sufficient — we consider ours to be better because, unlike our proposal, these
information to accurately classify periodontitis. Furthermore,  tools use thousands of features. The use of parsimonious models
satisfactory results can still be attained even when gingivitis is  with few features is crucial from a clinical point of view (Steyerberg,
present. All subsets demonstrate a high degree of predictive capacity ~ 2009), as simpler models facilitate the interpretability of the results,
with few features, highlighting the positive impact of feature  avoid overfitting, and increase the clinical applicability. In general,
selection. overly complex models should be avoided (Moons et al,, 2015). In
Given that all ensembles performed similarly according to  addition, they do not follow some of the key steps described earlier
the Venkatraman test, DES-P was selected as the representative in this section to achieve a reliable prediction.
ensemble, as it achieved the highest average test score across feature In more detail, Asgari et al, 2018 used 4,096 features,
numbers. Table 3 showed that ensembles were the best models for corresponding to 6-mers, and only seem to evaluate the classifier
all PD subsets. Table 4 confirmed that the DES-P model performed  with cross-validation, while we provide both the cross-validation
strongly and stably on the test data, achieving peak AUC values  and test set results. Our cross-validation results outperform theirs.
ranging from 0.895 to 0.973, depending on the subset and the  Unal et al. (2023) also used 4,096 features, did not consider class
number of features. imbalance, and only performed data splitting, without showing
the cross-validation results. Zhao etal. only used 442 out of the
1,359 samples for training and testing, which reduces the diversity
4.2 Inflammatory bowel disease (|BD) and variability of the data. Moreover, the only metric shown is
dataset the accuracy. Finally, Syama et al. (2023) do not seem to perform
any cross-validation, hyperparameter tuning or feature selection.
We also evaluated the pipeline on an IBD dataset, where the ~ While they use 1,250 features, we achieve highly promising scores
DES-P ensemble demonstrated strong predictive performance on  with only 26 features. Furthermore, the F1 scores of the traditional
the test set while using only 26 features. These results are better ~ models evaluated in their study show the neglected class imbalance
than those obtained by other studies using the same dataset to  (e.g., F1 score of 0.57 with RF), which is recognised and not
classify this disease using different approaches, as shown in Table 11.  taken into account in the evaluation. They achieve higher scores
Asgari et al., 2018 proposed Micropheno to classify phenotypes  than our proposal, but with an increased number of features and
using k-mer abundance tables and RF models. Unal et al. (2023)  without taking into account the strong class imbalance. We decided
evaluated different machine learning algorithms, including RE ~ to evaluate our proposal under their conditions to see if such
SVM, and kNN, to predict diseases using k-mer abundance tables. higher scores could be achieved. Without balanced classes, cross-
Zhao et al. (2021) proposed Read2Pheno, a phenotype classifier ~ validation, hyperparameter tuning, and feature selection techniques,
that uses Convolutional Neural Networks (CNN), Recurrent Neural we achieved even better results than those shown by Syama et al.
Networks (RNN), and attention mechanisms to individually classify ~ (2023). The DES-P ensemble scored 1 on all metrics, both on
each sequence in the samples. As a final comparison, Syama et al.  the test set and the training set. Nevertheless, the criteria already
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TABLE 11 Comparison of EPheClass with other works for the diagnosis of IBD. D: IBD. H, healthy; NSF, number of selected features; DS, data split; CV,

cross-validation.

Work Dataset size NSF ‘ DS and CV fl p r acc roc_auc
Asgari et al. (2018)? 731D - 628H 4,096 Only CV 76% 76% 76% - -

Unal et al. (2023) 1,023D - 336H 4,096 Only DS 76.5% 76.6% - 76.5% 82.1%
Zhao et al. (2021) 210D - 210H Unspecified Yes - - - 83.3% -
Syama et al. (2023) 1,023D - 336H 1,250 Only DS 95% - - 95% 93%
EPheClass (ours) 1,023D - 336H" 26 Yes 86.6% 89.0% 84.4% 80.4% 85.9%

“Scores obtained after cross-validation, in contrast to all other rows showing the test set results.

bSize of the original dataset. An additional 480 augmented healthy samples were added to the training set.

TABLE 12 Performance benchmark of EPheClass using DES-P compared to existing methods for PD and IBD diagnosis, and for antibiotic exposure
detection. NSF, number of selected features; DS, data split; CV, cross-validation.

acc ‘ roc_auc

Dataset Work ‘ NSF ‘ DS and CV fl p r
Mreyoud et al. (2022) 10,577 Only DS 90.5% 89.5% 91.4% 92.5% 96.7%
PD Oh and Zhang (2020) 10,577 Yes 81.2% 81.7% 80.8% 85.13% 87.1%
EPheClass (ours) 13 Yes 91.3% 88.1% 94.7% 92.9% 97.3%
Mreyoud et al. (2022) 9,511 Only DS 85.5% 80.1% 90.8% 76.9% 72%
IBD Oh and Zhang (2020) 9,511 Yes 81.8% 84.4% 79.4% 73.5% 71.5%
EPheClass (ours) 26 Yes 86.6% 89% 84.4% 80.4% 85.9%
Mreyoud et al. (2022) 3,901 Only DS 77.5% 91.5% 67.2% 84.5% 88.6%
DA Oh and Zhang (2020) 3,901 Yes 82.2% 85.9% 78.8% 86.8% 92.4%
EPheClass (ours) 22 Yes 81.4% 81.7% 81.1% 85.8% 92.3%

mentioned for reliable and accurate classifiers should be followed
in order to avoid overfitting and to achieve proper learning and
generalisation.

4.3 Antibiotic exposure (DA) dataset

Unlike the PD and IBD datasets, the DA dataset was not included
with the aim of comparing our results against existing studies
addressing the same classification task. Instead, it was used mainly
for benchmarking purposes, allowing us to test and compare our
pipeline against other existing phenotype classifiers. This dataset
served to further demonstrate the pipeline’s versatility in handling
different prediction problems.

4.4 Benchmarking
Additionally, we have benchmarked other phenotype classifier

tools to compare their performance with our pipeline using
the test sets of the PD, IBD, and DA datasets (see Table 12).

Frontiers in Bioinformatics

These tools are MegaD (Mreyoud et al, 2022), which employs
convolutional neural networks to classify microbiome data, and
DeepMicro (Oh and Zhang, 2020), which applies autoencoder-
based representation learning. For MegaD, we used the default
experimental configuration provided. In the case of DeepMicro,
although it was designed to perform feature reduction via
autoencoders, we were unable to run the pertinent code. Therefore,
we evaluated only the classifier (SVM), which still performed well in
their results.

While all methods produced competitive results, EPheClass
stands out by achieving comparable or superior performance
while using dramatically fewer features, fewer than 30 in all cases,
compared to the thousands used by other tools. This emphasises the
parsimony and interpretability of our pipeline, making it especially
suitable for clinical settings.

To the best of our knowledge, no other polymicrobial disease
classification pipeline has achieved such promising results with only
a few features. This is due to the combination of ASV abundance
filtering and Recursive Feature Elimination (RFE) to reduce data
dimensionality, as well as the use of dynamic ensemble models for
classification.
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4.5 Generalisation and limitations of the
pipeline

We have proven that the pipeline performs well in classifying
different phenotypes, i.e., periodontal disease, IBD, and antibiotic
exposure. This robustness was further supported by additional
experiments using multiple data partitions, extended feature sets
of up to 1,500 features, and different class imbalance management
strategies (augmentation, no augmentation, and downsampling).
This highlights the generalisability of the approach to other study
niches and different sample types.

However, our pipeline’s ability to accurately classify phenotypes,
as well as any other classifier from abundance tables, can be
influenced by the sequencing depth of the data. Each training
sample must include a minimum number of sequences, which
depends on the sample type and the quality of the sequencing
process. A greater depth increases the ability to distinguish
between classes.

In conclusion, the proposed pipeline achieved a balance
between high scores and a smaller number of features through
feature selection and dynamic ensembles. Additionally, it ensures
reproducibility of results and reduces computational costs by
significantly reducing data dimensionality. The results are now
more comprehensible, allowing for the identification of specific
bacteria that may cause or influence the disease under study.
Moreover, our findings exceed those of prior studies that did
not employ a rigorous methodology. We are convinced that this
pipeline is capable of accurately classifying any heterogeneous
polymicrobial disease dataset and producing reliable and
representative results.
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