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One area of bioinformatics that is currently attracting particular interest is 
the classification of polymicrobial diseases using machine learning (ML), with 
data obtained from high-throughput amplicon sequencing of the 16S rRNA 
gene in human microbiome samples. The microbial dysbiosis underlying these 
types of diseases is particularly challenging to classify, as the data is highly 
dimensional, with potentially hundreds or even thousands of predictive features. 
In addition, the imbalance in the composition of the microbial community 
is highly heterogeneous across samples. In this paper, we propose a curated 
pipeline for binary phenotype classification based on a count table of 16S 
rRNA gene amplicons, which can be applied to any microbiome. To evaluate 
our proposal, raw 16S rRNA gene sequences from samples of healthy and 
periodontally affected oral microbiomes that met certain quality criteria were 
downloaded from public repositories. In the end, a total of 2,581 samples 
were analysed. In our approach, we first reduced the dimensionality of the 
data using feature selection methods. After tuning and evaluating different 
machine learning (ML) models and ensembles created using Dynamic Ensemble 
Selection (DES) techniques, we found that all DES models performed similarly 
and were more robust than individual models. Although the margin over other 
methods was minimal, DES-P achieved the highest AUC and was therefore 
selected as the representative technique in our analysis. When diagnosing 
periodontal disease with saliva samples, it achieved with only 13 features 
an F1 score of 0.913, a precision of 0.881, a recall (sensitivity) of 0.947, an 
accuracy of 0.929, and an AUC of 0.973. In addition, we used EPheClass to 
diagnose inflammatory bowel disease (IBD) and obtained better results than 
other works in the literature using the same dataset. We also evaluated its 
effectiveness in detecting antibiotic exposure, where it again demonstrated 
competitive results. This highlights the importance and generalisation aspect of 
our classification approach, which is applicable to different phenotypes, study
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niches, and sample types. The code is available at https://gitlab.citius.usc.es/
lara.vazquez/epheclass.
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1 Introduction

One area of bioinformatics that has attracted particular interest 
in recent years is the classification of diseases using machine learning 
(Asgari et al., 2018; Zhao et al., 2021). In particular, pathologies 
caused by an imbalance in the composition of the microbial 
community (dysbiosis), which are more difficult to predict because 
there is no specific bacterium to blame (Relvas et al., 2021).

The most commonly used genetic marker in this type of 
analysis is the 16S ribosomal RNA (rRNA) gene (Rajendhran 
and Gunasekaran, 2011), which is present in all bacteria and 
contains both conserved and hypervariable regions. The former are 
regions that are identical or similar in nucleic acids across bacterial 
species, and the latter have considerable sequence diversity between 
different bacterial species. The conserved regions are often used 
to bind the primer pairs that allow amplification and subsequent 
sequencing of part or all of the 16S rRNA gene. Meanwhile, the 
hypervariable regions between the previously fixed primer pairs 
provide the information needed to find, separate, and count the 
different bacterial species present in the microbiome being analysed.

In the literature, 16S rRNA gene sequences are often clustered 
into Operational Taxonomic Units (OTUs), which group sequences 
based on a defined threshold of sequence similarity and serve 
as standard units in marker gene analysis. However, OTUs have 
some limitations, including limited reusability and a lack of 
comprehensiveness, which can negatively impact the quality of 
results. An alternative approach is to use k-mers (substrings of 
nucleotide sequences of length k); however, these suffer from 
poor interpretability, as individual k-mers do not carry any 
inherent biological meaning. These limitations can be overcome 
by using Amplicon Sequence Variants (ASVs), which are any 
of the derived single DNA sequences obtained from a high-
throughput analysis (Callahan et al., 2017).

Machine learning algorithms, such as random forest (RF) or 
support vector machines (SVM), and neural network algorithms, 
such as multilayer perceptron (MLP), have been used in various 
studies to classify patients as healthy or diseased based on their 
microbiome composition (Uddin et al., 2019; Yu et al., 2022). Several 
works in the literature classify periodontal disease (Lundmark et al., 
2019; Narita and Kodama, 2022; Na et al., 2020; Chen et al., 2021). 
However, none of these studies employ a rigorous procedure for 
making reliable and accurate predictions. Such a procedure would 
require a sufficiently large sample size, data set splitting, and cross-
validation, as well as an adequate number of features to support 
generalisable conclusions.

In this paper, we consider the importance of following a curated 
pipeline for phenotype classification using 16S rRNA gene amplicon 
count tables. Furthermore, we aim to achieve the best possible 
results, ensuring reproducibility and reducing the computational 
costs. We selected a wide range of popular machine learning 

algorithms, from classic to newer and more complex: k-nearest 
neighbours (kNN), RF, SVM, extreme gradient boosting (XGBoost), 
and MLP, and used them to build dynamic ensemble models. 

2 Methods

2.1 Periodontal disease dataset

This study used a periodontal disease (PD) dataset compiled by 
our research team. It was assembled from other datasets found in 
the literature, considering only those that were available in public 
repositories and that also had metadata associated to properly 
differentiate the samples and their corresponding pathologies. 
The study examines the salivary and plaque microbiota of adult 
patients with varying periodontal health conditions. The V3-
V4 region of the 16S rRNA gene was targeted, and Illumina 
sequencing technology was used. For a summary of the Bioprojects 
used, refer to Supplementary Table S1.

This dataset comprises multiple independent studies, each with 
samples containing paired-end sequences ranging from 250 to 300 
base pairs (bp). We merged these sequences into contigs with a 
minimum overlap of 20 bp. Samples that did not meet the minimum 
number of 5,000 sequences per sample were excluded.

A total of 2,581 samples were collected from various sources. 
The samples can be classified based on several variables, with the 
most significant being the type of disease (periodontitis or gingivitis) 
and the site of sample collection (subgingival plaque, supragingival 
plaque, or saliva).

Different combinations of variable types were considered, 
resulting in various subsets of the dataset. To introduce 
heterogeneity, samples of periodontitis were combined with samples 
of gingivitis, which is considered an early stage of periodontal 
involvement. Given the importance of dental plaque in the 
pathogenesis of periodontitis, the subgingival and supragingival 
samples were analysed together, while the saliva samples were 
studied separately. Ultimately, we generated four subsets. Two of 
these subsets were fairly balanced, while the remaining two were 
highly unbalanced, as shown in Table 1.

The samples undergo a quality control process using USEARCH 
(Edgar, 2010). Sequences with a maximum number of expected 
errors greater than one were excluded (Edgar and Flyvbjerg, 
2015), as this threshold, which is based on the sum of base-wise 
error probabilities, reflects overall sequence quality. In addition, 
sequences that did not exceed the minimum length of 300 bp 
were excluded.

Following quality control, we performed additional 
processing to obtain the ASVs and their abundance 
table using mothur (Schloss et al., 2009), which is 
detailed in the Supplementary Section S1. A total of 10,577 ASVs 
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TABLE 1  Subsets generated from the original periodontal disease dataset to evaluate EPheClass. Legend: Disease (P: periodontitis, G: gingivitis), #D: 
number of samples affected by the disease, #Not-D: number of samples not affected by the disease.

Subset Disease Collection site #Samples #D #Not-D

PD_s P saliva 797 314 483

PGD_s P + G saliva 815 332 483

PD_p P plaquea 1,667 1,298 369

PGD_p P + G plaquea 1,766 1,397 369

aSubgingival + supragingival samples.

FIGURE 1
EPheClass pipeline for ensemble-based phenotype classification from ASV abundance tables.

were identified. These tables can be found in https://github.com/
Oral-Sciences-Research-Group/Epheclass_dataset. 

2.2 EPheClass phenotype classification 
pipeline

The EPheClass pipeline is proposed for classifying phenotypes, 
such as diseases. This pipeline, developed in Python 3.10, 
is shown in Figure 1 and begins with an ASV abundance table 
containing the frequencies of the ASVs in the different samples, 
which are then classified into the desired categories. In this proposal, 
the samples are classified as either affected by the disease (D), 
or not affected by the disease (Not-D). The pipeline consists of 
two main modules: data processing and training and evaluation. 
The data processing step prepares the ASV abundance table for 
the classification step by selecting the most relevant features to 
reduce dimensionality and discard ASVs without significance. The 
training and evaluation step focuses on training the tuned models 
and subsequently evaluating them to propose the best ensemble 
model as output.

2.2.1 EPheClass module 1: data processing
In this first module of the pipeline, shown in Figure 2, the 

sequences are prepared for the classification module through six 
steps: sample filtering, ASV abundance filtering, train/test data 
splitting, data augmentation (optional), data transformation, and 
feature selection.

In the first step, samples with low counts of ASVs are excluded, 
and only those with a significant number of sequences are retained. 
We chose a threshold of at least 2,500 total counts per sample. From 
the initial 2,581 samples, 42 were discarded.

In the second step, a pseudo count of 1 is added to each 
value in the abundance table to correct its sparsity. Then, the 
relative frequencies of the ASVs are calculated for each sample, 
and the 1,500 most abundant are selected. Thus, we avoid the 
instability associated with non-abundant ASVs by discarding those 
with low frequencies (Jiang et al., 2021). Moreover, from a 
clinical perspective, higher abundance ASVs are often considered 
more relevant indicators of microbial community shifts and 
disease states (Nikodemova et al., 2023).

The dataset is then split into training and test sets in a stratified 
fashion to maintain the same proportions of examples in each class 
as observed in the original dataset. For the training set, 70% of the 
data was used. For the test set, the remaining 30% of the data was 
used. These proportions were chosen considering that 10% of the 
training subset should be used as the validation set during the 10-
fold cross-validation in the model’s tuning process.

Next, an optional data augmentation step is available if the 
data is significantly unbalanced. Compositional CutMix (Gordon-
Rodriguez et al., 2022) was chosen as the data augmentation 
algorithm because it was specifically designed for compositional 
data (CoDa), such as ASV count tables. This algorithm creates 
additional data points by combining pairs of training samples 
from the same class using complementary subcompositions and 
renormalisation. The use of cross-validation means that only 
training data needs to be augmented separately in each iteration, 
using a fixed random seed to ensure consistency in the augmented 
data, which is then combined to form the new augmented subset.

Due to the compositional nature of the information (Gloor et al., 
2017), we can only work in the CoDa space (also known as 
simplex) or transform the data into the Euclidean space using a 
log ratio transformation (Aitchison, 1982). In this case, the centred 
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FIGURE 2
EPheClass pipeline module 1: data processing.

log-ratio transformation (CLR) was chosen to transform each 
row (sample) individually, as recommended when working with 
compositional data (Quinn et al., 2019).

The training data underwent a feature selection (FS) stage 
to reduce the number of features (ASVs in this case), lower 
computational costs, and enhance the performance of predictive 
models. Recursive Feature Elimination (RFE) was employed as the 
selection method, using three different estimators to prevent any bias 
in the classification algorithm: RF, SVM, and Logistic Regression 
(LR). This technique iteratively removes features from the feature 
set and evaluates the performance of the selected model (estimator) 
on the reduced feature set. The features with the least impact on the 
model’s performance are then discarded.

To ensure the extraction of the most selected and likely best 
features, we chose ASVs that were selected by all three feature 
selection methods. As a result, we obtained a reduced ASV 
abundance table at the end of the EPheClass module 1, containing 
only the most representative ASVs based on the target number 
of features. As there were n different target numbers of features 
evaluated, n different ASV abundance tables were obtained. These 
tables were then used to determine the best classification model and 
target number of features. 

2.2.2 EPheClass module 2: training and 
evaluation

Module 2 of the pipeline, as illustrated in Figure 3, performs 
the classification and evaluation through four steps: hyperparameter 
tuning, validation of individual models, creation of ensemble 
models, and final training and testing of the models.

Firstly, to tackle our classification problem, we need to carry out 
a process of training and evaluating different models. This should 
range from traditional techniques such as kNN, RF, or SVM to 
more complex ones such as XGBoost or MLP. The selection of 
techniques is heterogeneous due to their fundamental differences, 
except for XGBoost and RF, which are both decision tree-based. 
The objective is to develop an ensemble model that surpasses the 
individual models and overcomes their limitations.

The initial stage involves selecting parameters for each 
technique, known as hyperparameter tuning. To achieve 
this, we utilised the GridSearchCV function from the Scikit-
learn library (Pedregosa et al., 2011). We exhaustively tested 
various values for several parameters of each algorithm, as 

shown in the Supplementary Table S2, and then selected the best-
performing combinations using 10-fold stratified cross-validation. 
We chose the most frequently tuned parameters, as well as additional 
parameters that could have a significant impact on the results.

Although some subsets are more balanced than others, they 
generally tend to have some degree of imbalance. Therefore, we used 
the ROC AUC value, hereafter referred to simply as AUC, as the 
key metric to select the best combination of hyperparameters. In 
this case, both false negatives and false positives are damaging, as 
the patient would be misdiagnosed and the disease ignored, or the 
patient could be subjected to unnecessary treatment. As the AUC 
distinguishes between positive and negative classes across multiple 
classification thresholds, it was considered more appropriate for 
this study.

Figure 3 shows that, after tuning the hyperparameters for 
each model, we evaluated them individually using stratified 10-
fold cross-validation. Next, we employed four different Dynamic 
Ensemble Selection (DES) techniques (Cruz et al., 2018b) to create 
promising ensemble models. These techniques dynamically select 
the best ensemble from a pool of base models for each input. 
Four techniques from the DESlib Python library (Cruz et al., 
2018a) were tested: Dynamic Ensemble Selection-Performance 
(DES-P), Dynamic Ensemble Selection-Clustering (DES-C), k-
Nearest Oracles Eliminate (KNORA-E), and k-Nearest Oracles 
Union (KNORA-U). The DES-P method selects base models that 
perform better than a random classifier in a domain of competence 
estimated using kNN (finding the k closest samples to the input). 
The DES-C method selects base models based on their accuracy and 
diversity, using the double error diversity measure. The KNORA-E 
method selects base models that perform perfectly on samples in 
the region of competence, reducing this region if necessary to find 
perfect models. The KNORA-U method selects base models that 
correctly classify at least one sample in the region of competence, 
with each model being assigned a weight according to the number 
of correct classifications.

Hyperparameter tuning is performed to select the optimal value 
for parameter k, which determines the region of competence in 
dynamic ensembles. This is done using the already tuned and pre-
trained individual models. Evaluation is then carried out using 
cross-validation, and individual models and ensemble models are 
finally evaluated again through training and testing processes.

Finally, overall performance was visualised using ROC AUC 
plots. Statistical comparisons were then conducted using the 
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FIGURE 3
EPheClass pipeline module 2: training and evaluation.

Venkatraman test: the paired version (Venkatraman, 1996) was 
used to compare models within the same data partition, while 
the unpaired version (Venkatraman, 2000) was applied to assess 
differences across data partitions or between class imbalance 
strategies. 

2.3 Application of EPheClass

2.3.1 Diagnosing periodontal disease (PD)
The PD dataset was analysed using this pipeline to ensure 

the quality, robustness, and reproducibility of the results. A 
series of experiments were conducted to identify the model that 
would achieve the best results while prioritising a smaller number 
of features.

Four subsets of the PD dataset (see Table 1) were assessed: PD_
p, PGD_p, PD_s, and PGD_s. We evaluated different numbers of 
features for each subset, ranging from 2 to 15, focusing on lower 
values to thoroughly test the feasibility of dimensionality reduction. 
Experiments were conducted for each combination of subset and 
number of features.

The EPheClass pipeline was used for each experiment. To 
address the strong imbalance in the classes, data augmentation 
was performed on the healthy samples of the training set for the 
two plaque subsets. This was done to achieve the same number 
of healthy and diseased samples. As the plaque subsets consisted 
of samples from both supragingival and subgingival sites, we 
separated the samples in each fold based on their collection site and 
augmented them separately. Following this step, the PD_p subset 
was augmented by 630 healthy samples, and the PGD_p subset 
was augmented by 690 healthy samples. In the second module, 
five individual models (RF, SVM, kNN, MLP, and XGBoost) were 
tuned, evaluated, and used to build ensemble models using several 
DES techniques. The best overall ensemble model was then selected 
based on the average test AUC values over the different numbers of 
features, and then it was evaluated along with the base models on 
the test set.

Feature selection algorithms were applied to the training sets in 
all experiments. The ASVs selected in common by all techniques 

were kept to obtain a final number of selected features (NSF) 
between 2 and 15. Different target numbers of features were tested 
on each method until all desired common values were found. 

2.3.2 Diagnosing inflammatory bowel 
disease (IBD)

A first non-curated iteration of the EPheClass pipeline was 
previously used to diagnose Crohn’s Disease (CD) (Vázquez-
González et al., 2023). From this initial version, the pipeline has been 
improved by adapting the pre-processing of the data to take into 
account its compositional nature, and by using dynamic ensemble 
building strategies instead of static ones. Therefore, we additionally 
applied the new, improved version of EPheClass to the diagnosis 
of inflammatory bowel disease (IBD), and compared the results 
obtained with those obtained by other tools employing the same 
dataset but different classification approaches. For this purpose, 
we used the Gevers et al. (Gevers et al., 2014) dataset. It contains 
a total of 1,359 samples, of which 1,023 are from patients with 
Crohn’s disease (CD), ulcerative colitis (UC), and indeterminate 
Colitis (IC), and the remaining 336 are from patients without IBD 
who are considered healthy individuals for the purposes of this 
study. It contains 16S rRNA gene sequence data belonging to the V4 
hypervariable region.

As our pipeline can classify from any type of count table, we used 
the existing OTU abundance table containing 9,511 OTUs instead of 
an ASV abundance table. This OTU abundance table can be found 
in the QIITA database (https://qiita.ucsd.edu/) (Study ID: 1939). A 
wide range of NSFs were evaluated, from 6 to 38. 

2.3.3 Classifying antibiotic exposure (DA)

To demonstrate the versatility of the EPheClass 
pipeline, we applied it to the DIABIMMUNE Antibiotics 
Cohort (DA) (Yassour et al., 2016) to classify whether a child had 
been exposed to antibiotics or not, based on OTU profiles derived 
from stool samples. Microbiome samples were recorded at multiple 
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time points, with sample identifiers encoding the subject and age 
at the time of collection. OTU data and antibiotic metadata were 
stored separately and required integration to prepare a classification-
ready dataset. A total of 1,101 samples with 3,901 OTUs were used. 
This dataset is relatively unbalanced and also benefits from data 
augmentation.

We conducted experiments across feature sets ranging 
from 2 to 40 OTUs, using the same feature selection and 
ensemble classification strategy employed in the PD study. CLR 
transformation was applied to relative abundances, and the most 
informative OTUs were selected through consensus-based feature 
selection. Performance was assessed using the same model tuning 
and evaluation procedure as before, allowing a direct comparison 
across different phenotypes. 

2.3.4 Additional experimentation

To strengthen the robustness and generalisability of our findings, 
we conducted a series of additional experiments on all the datasets 
we had studied, to assess how sensitive our results were to key 
methodological choices.

Firstly, to ensure that the results were not biased by the train-
test split, we repeated all experiments using five different randomly 
generated data partitions, each created with a different random 
seed, while maintaining the proportion of training, validation, 
and test data.

Next, we studied the effect of feature reduction by evaluating a 
large number of features, up to 1,500, to assess stability in model 
performance. Target points were set around 100, 200, 400, 600, 800, 
1,000, and 1,500, each with a tolerance of ±30 features. Our aim was 
to evaluate the potential loss of sensitivity inherent in any feature 
selection process, particularly when considering the intersection of 
the three methods and the impact of imposing a feature cap.

Finally, we evaluated the impact of data augmentation by 
comparing it with no augmentation and downsampling of the 
majority class. This study was only applied to those cases where class 
imbalance was present. 

3 Results

3.1 Periodontal disease (PD) dataset

Table 2 displays the target number of features required to achieve 
the desired number of ASVs selected by all methods (NSF). Further 
information on the contribution of each FS method to the final 
selection of ASVs is provided in Supplementary Table S3.

For each experiment, we evaluated the previously listed ML 
algorithms using the ASV abundance table filtered by the NSFs. 
We then trained and evaluated various ensembles composed using 
DES techniques. For each of the four subsets, Figure 4 displays 
the AUC values obtained by evaluating all base models and 
ensembles using 10-fold stratified cross-validation on the training 
set. The Supplementary Material contains comprehensive score 
tables (Supplementary Table S4–7) of all the evaluated models, one 
for each plot in Figure 4.

TABLE 2  Target number of features to achieve the desired final number 
of features (NSF) for each periodontitis subset.

NSF Target number of features

PD_p PGD_p PD_s PGD_s

2 35 20 25 20

3 40 25 30 30

4 46 45 45 50

5 47 47 50 55

6 49 50 55 60

7 50 55 57 -a

8 60 65 58 65

9 65 66 59 68

10 71 67 60 70

11 72 70 75 75

12 80 76 80 80

13 85 79 83 83

14 87 80 85 85

15 91 97 90 90

aCould not find consensus of 7 features in common for all three feature selection methods 
for subset PGD_s.

The first row of Figure 4 presents cross-validation AUC 
values for the saliva samples: one plot for periodontitis 
alone (PD_s) and another for periodontitis combined with 
gingivitis (PGD_s). Each plot shows the AUC values of the 
base models (dashed lines) and the four ensemble methods 
(solid lines) across different NSFs. Overall, the ensemble 
models outperform the individual models across all NSFs. 
Specifically, in Figure 4A (PD_s), all ensembles achieve AUC 
values above 0.95, while even the lowest-performing individual 
model, MLP, maintains an AUC above 0.85 for all NSF. 
Similarly, in Figure 4B (PGD_s), ensemble models again outperform 
individual models, with their AUC values stabilising after 8 
selected features.

The second row of Figure 4 shows cross-validation AUC values 
for the plaque samples, one for periodontitis alone (PD_p) and the 
other for periodontitis and gingivitis combined (PGD_p). As in the 
saliva samples, the ensemble models are the best-performing models 
for all NSFs in both cases. In Figure 4C, the scores start to drop below 
7 features and increase and stabilise above 7, with AUC values over 
0.95. Similar results were obtained for subset PGD_p in Figure 4D, 
where ensembles performed better for larger numbers of features 
with AUC values of over 0.95.

These comparisons were supported with the paired 
Venkatraman test (Venkatraman, 1996), evaluating pairwise 
differences between models for each NSF. As expected, all cases 
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FIGURE 4
Evolution of the AUC in relation to the number of selected features (NSF) for various models, as evaluated using 10-fold stratified cross-validation on 
the training data across four different periodontitis subsets: (A) periodontitis in saliva, (B) periodontitis and gingivitis in saliva, (C) periodontitis in plaque, 
and (D) periodontitis and gingivitis in plaque. The following models and ensembles were applied: RF, SVM, MLP, kNN, XGBoost, KNORA-E, KNORA-U, 
DES-P, and DES-C..

showed significant differences between the ensembles and the 
individual models. A summary table of these comparisons is 
provided in the Supplementary Table S13.

To determine the optimal model for each subset, we evaluated 
the base models and ensembles using real, previously unseen data 
to form the test set. The AUC values obtained with each model were 

averaged over the different numbers of features. Table 3 displays the 
results of the ensembles for all metrics used to evaluate the models, 
including the F1 score (f1), precision (p), recall (r), accuracy (acc), 
and the area under the ROC curve (roc_auc). The full version of this 
table, including the averaged test set AUC values of the base models, 
can be found in Supplementary Table S8.
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TABLE 3  Evaluation metrics used for the ensembles: F1 score (f1), precision (p), recall (r), accuracy (acc), and area under the ROC curve (roc_auc). The 
test set scores of the four periodontitis subsets were averaged over the different numbers of features, ranging from 2 to 15.

Subset Algorithm f1 p r acc roc_auc

PD_s

DES-C ensemble 0.885 0.869 0.902 0.908 0.964

DES-P ensemble 0.891 0.874 0.908 0.913 0.966

KNORA-E ensemble 0.878 0.871 0.885 0.903 0.964

KNORA-U ensemble 0.890 0.875 0.907 0.912 0.963

PGD_s

DES-C ensemble 0.867 0.834 0.905 0.891 0.959

DES-P ensemble 0.871 0.847 0.897 0.896 0.961

KNORA-E ensemble 0.868 0.841 0.897 0.893 0.959

KNORA-U ensemble 0.874 0.850 0.900 0.898 0.960

PD_p

DES-C ensemble 0.876 0.876 0.876 0.808 0.834

DES-P ensemble 0.877 0.885 0.869 0.810 0.838

KNORA-E ensemble 0.878 0.884 0.873 0.813 0.837

KNORA-U ensemble 0.875 0.887 0.865 0.810 0.839

PGD_p

DES-C ensemble 0.876 0.892 0.862 0.809 0.823

DES-P ensemble 0.875 0.903 0.849 0.809 0.824

KNORA-E ensemble 0.877 0.895 0.861 0.810 0.819

KNORA-U ensemble 0.874 0.905 0.847 0.808 0.825

Based on the results of the test set, the ensemble techniques 
demonstrated highly similar performance, with a maximum 
difference of just 0.06 in the AUC values. These comparisons 
were supported by the Venkatraman paired test (Venkatraman, 
1996). Evaluating pairwise differences between models for each NSF, 
only a small proportion of model comparisons showed statistically 
significant differences, averaging around 20%. This means that, out 
of all 1,660 model comparisons performed across different NSFs 
and subsets in the test set, only about 20% indicated statistically 
significant differences. A summary table of these comparisons is 
provided in the Supplementary Table S9.

Given these minor differences, DES-P was selected as the 
reference ensemble method, as it consistently achieved the highest 
AUC values across most subsets. For PD_s, DES-P obtained an F1 
score of 0.891, precision of 0.874, recall of 0.908, accuracy of 0.913, 
and an AUC of 0.966. For PGD_s, DES-P achieved an F1 score of 
0.871, precision of 0.847, recall of 0.897, accuracy of 0.896, and AUC 
of 0.961. For PD_p, DES-P recorded an F1 score of 0.877, precision 
of 0.885, recall of 0.869, accuracy of 0.810, and AUC of 0.838. Finally, 
for PGD_p, DES-P reached an F1 score of 0.875, precision of 0.903, 
recall of 0.849, accuracy of 0.809, and AUC of 0.824.

In Figure 5, the test set AUC values for the base techniques and 
ensembles are presented. The first row displays two plots for the 
saliva samples, one for periodontitis alone (PD_s) and the other for 
periodontitis and gingivitis (PGD_s). The Supplementary Material 

contains comprehensive score tables (Supplementary Table S10–13) 
of all the evaluated models, one for each plot in Figure 5.

Figure 5A (PD_s) and Figure 5B (PGD_s) show that, while 
ensembles and individual models achieved similar AUC values, the 
ensemble presented greater stability across the range of selected 
features and maintained higher AUC values even with fewer 
features. The second row of Figure 5 presents two plots for the 
plaque samples: one for periodontitis alone (PD_p) and the other 
for periodontitis combined with gingivitis (PGD_p). As seen for 
saliva, ensembles and individual models achieved similar AUC 
values, but the ensemble presented greater stability across the 
different NSFs. However, in both plaque subsets, the scores begin 
to drop below 8 features, but remain stable and slightly increase
above this value.

Overall, the results indicate that the ensembles performed 
considerably better in cross-validation results (training set) and were 
more stable than the individual models with the test set. Notably, the 
periodontitis samples alone performed similarly to the combination 
of periodontitis and gingivitis samples. As for the plaque subsets, 
which were twice the size of the saliva subsets, the ensembles tended 
to enhance the results for a larger number of features. In this case, 
the samples of periodontitis alone also showed similar results to the 
samples of both periodontitis and gingivitis combined.

Table 4 presents the analysis of the performance of various 
feature numbers on the test set using the reference ensemble, DES-P, 
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FIGURE 5
Evolution of the AUC in relation to the number of selected features (NSF) for model comparison across four different periodontitis subsets: (A)
periodontitis in saliva, (B) periodontitis and gingivitis in saliva, (C) periodontitis in plaque, and (D) periodontitis and gingivitis in plaque. Results for RF, 
SVM, MLP, kNN, XGBoost, and DES-P for each subset were obtained using the test set data.

for all subsets. The three best-performing models were selected for 
each subset based on the AUC values.

We can observe that there is a minimal variation in the 
AUC between the three best, with differences of only up to 
0.006, indicating great consistency and stability in classification 
performance. Thus, we decided to select the best model based 
on the NSF, prioritising small numbers of features. As such, the 

DES-P ensemble achieved the best performance using 13 features 
for PD_s, 9 features for PGD_s, 13 features for PGD_p, and 13
features for PD_p.

As outlined in Section 2.3.4, to further evaluate the results, 
these experiments were repeated for five different data partitions. 
In most cases, the unpaired Venkatraman test (Venkatraman, 2000) 
showed no statistically significant differences between the partitions. 
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TABLE 4  F1 score (f1), precision (p), recall (r), accuracy (acc), and area under the ROC curve (roc_auc) for the reference ensemble, and its performance 
with different numbers of features with the test set for each periodontitis subset. Only the three best number of features are shown, ordered per subset 
from lowest to highest NSF.

Subset Algorithm NSF f1 p r acc roc_auc

PD_s DES-P

13 0.913 0.881 0.947 0.929 0.973

14 0.903 0.913 0.894 0.925 0.978

15 0.898 0.903 0.894 0.921 0.974

PGD_s DES-P

9 0.854 0.837 0.872 0.883 0.958

12 0.873 0.835 0.915 0.895 0.959

14 0.867 0.833 0.904 0.891 0.957

PD_p DES-P

13 0.903 0.918 0.889 0.852 0.897

14 0.913 0.924 0.902 0.867 0.903

15 0.904 0.909 0.899 0.852 0.901

PGD_p DES-P

13 0.899 0.927 0.873 0.846 0.895

14 0.907 0.933 0.882 0.857 0.895

15 0.913 0.929 0.897 0.865 0.897

This indicates that performance was generally consistent regardless 
of the specific train-test split. Specifically, when evaluating the 
test sets, the different partitions within each subset yielded highly 
consistent results, with similarity across seeds exceeding 90%. More 
information on Supplementary Table S14.

Additionally, we evaluated the impact of data augmentation. 
The results obtained in the plaque subsets with augmentation 
were compared to those obtained with no augmentation and with 
downsampling of the majority class. The unpaired Venkatraman 
test revealed no statistically significant differences among the three 
strategies. This suggests that the models can generalise effectively 
even when trained on unbalanced data, likely due to the inherent 
distinctiveness of the classes. However, data augmentation is still 
standard practice for addressing class imbalance in predictive 
modelling. As it does not negatively impact performance, its use is 
recommended to ensure methodological rigour (Kuhn and Johnson, 
2013). More information on Supplementary Table S15, 16.

Furthermore, we evaluated larger numbers of features ranging 
from 100 to 1,500 to assess stability in model performance. 
We observed that, for over 100 features, the ROC AUC 
stabilises for both the cross-validation and test results. The 
plots corresponding to these larger feature numbers are 
available in the Supplementary Figures S1, 2.

Lastly, it is of interest to analyse the specific ASVs that 
were involved in the classification. To accomplish this, the 
taxonomy of each ASV was obtained and compared among the 
four subsets. Table 5 illustrates that certain features are duplicated 
between the saliva subsets (with and without gingivitis), as well as for 
the plaque subsets. Additionally, it was found that feature ASV00242 
is significant for PD_s, PGD_s, and PGD_p, which corresponds 
to the bacterial species Bacteroidaceae [G-1], bacterium_HMT272. 

The study’s findings indicate that the genus Streptococcus is present 
in all subsets.

3.2 Inflammatory bowel disease (IBD) 
dataset

For IBD, Supplementary Table S17 shows the target number of 
features required to achieve the desired number of OTUs selected 
by all methods (NSF).

Figure 6 shows the AUC values after applying EPheClass to the 
IBD dataset. The Supplementary Material contains comprehensive 
score tables (Supplementary Tables S18, 19) of all the evaluated 
models, one for each plot in Figure 6. Specifically, Figure 6A 
shows that the ensembles perform significantly better than the 
base models with cross-validation, while performing similarly to 
each other. Figure 6B shows that the ensembles and base models 
perform comparably on the test set, performing worse with fewer 
numbers of features, but more stable and slightly better for 
larger numbers.

These comparisons were also supported by the paired 
Venkatraman test (Venkatraman, 1996). As expected, cross-
validation revealed significant differences between the ensembles 
and the individual models. With the test set, however, only a small 
proportion of 22% of the 300 model comparisons across different 
NSFs showed statistically significant differences. A summary table 
of these comparisons is provided in the Supplementary Table S20.

Table 6 displays the averaged test set results of the ensembles 
for all metrics used to evaluate the models. The AUC values 
obtained with each model have been averaged over the different 
numbers of features. The full version of this table, including 
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TABLE 5  ASVs used in the best model for each periodontitis subset, including their taxonomy.

PD_s PGD_s PD_p PGD_p Genus Species

ASV02511 ✓ Actinomyces sp.HMT172

ASV01745 ✓ Prevotella melaninogenica

ASV00242 ✓ ✓ ✓ Bacteroidaceae [G-1] bacterium_HMT272

ASV00195 ✓ ✓ Treponema unclassified

ASV00121 ✓ ✓ Streptococcus unclassified

ASV00085 ✓ Streptococcus unclassified

ASV00027 ✓ ✓ Streptococcus vestibularis

ASV00015 ✓ ✓ Tannerella forsythia

ASV00006 ✓ Rothia aeria

ASV00005 ✓ Veillonella dispar

ASV00564 ✓ Haemophilus sputorum

ASV00643 ✓ ✓ Actinomyces sp.HMT169

ASV00155 ✓ Streptococcus unclassified

ASV01554 ✓ Veillonella rogosae

ASV00036 ✓ unclassified Saccharibacteria (TM7) [F-1] unclassified

ASV00559 ✓ Butyrivibrio sp.HMT080

ASV01577 ✓ ✓ Cardiobacterium hominis

ASV01534 ✓ Streptococcus oralis_subsp.dentisani_clade_058

ASV01025 ✓ Lactobacillus ultunensis

ASV00929 ✓ Porphyromonas catoniae

ASV00721 ✓ Cutibacterium acnes

ASV00650 ✓ ✓ unclassified Saccharibacteria (TM7) [F-1] unclassified

ASV00380 ✓ ✓ Streptococcus unclassified

ASV00233 ✓ Haemophilus sp.HMT036

ASV00206 ✓ Actinomyces massiliensis

ASV00189 ✓ ✓ Peptostreptococcaceae [XI][G-6] nodatum

ASV00108 ✓ ✓ Pseudomonas fluorescens

ASV00030 ✓ Fusobacterium unclassified

ASV01669 ✓ Leptotrichia wadei

ASV01356 ✓ Rothia dentocariosa

ASV01320 ✓ Veillonella unclassified

ASV01234 ✓ Cupriavidus gilardii

(Continued on the following page)
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TABLE 5  (Continued) ASVs used in the best model for each periodontitis subset, including their taxonomy.

PD_s PGD_s PD_p PGD_p Genus Species

ASV00793 ✓ Peptostreptococcaceae [XI][G-6] minutum

ASV00213 ✓ Mycoplasma faucium

ASV01679 ✓ Veillonella unclassified

ASV00199 ✓ Corynebacterium durum

FIGURE 6
Evolution of the AUC as a function of the number of selected features (NSF) for different models applied to the IBD dataset. The models were analysed 
using (A) cross-validation and (B) the test set. The models and ensembles used were RF, SVM, MLP, kNN, XGBoost, KNORA-E, KNORA-U, 
DES-P, and DES-C.

the averaged test set AUC values of the base models, can 
be found in Supplementary Table S21. It shows that the ensembles 
perform similarly to each other in terms of AUC value, with a 
difference of only 0.017. Due to the lack of significant differences, 
we selected DES-P as the reference ensemble, as it had the highest 
AUC on average. The DES-P ensemble achieved an F1 score of 0.854, 
a precision of 0.865, a recall of 0.844, an accuracy of 0.783, and an 
AUC of 0.809.

Table 7 shows the results of analysing the performance of 
different numbers of features on the test set using the selected 
ensemble, DES-P. As there was very little variation in the AUC 
between the three best models, regardless of the NSF, the model with 
the fewest features was chosen. Consequently, the DES-P ensemble 
performed best with just 26 features.

The additional experiments confirmed the same conclusions 
as in the PD analysis, showing consistent performance with no 
statistically significant differences for different data partitions 

(Supplementary Table S22) and for different class imbalance 
management strategies (Supplementary Table S23).

As with the PD dataset, we evaluated larger numbers 
of features from 100 to 1,500 to assess stability in model 
performance. We observed that, for over 100 features, the ROC 
AUC stabilises for both the cross-validation and test results. 
The plots corresponding to these larger feature numbers are 
available in the Supplementary Figure S3. 

3.3 Antibiotics exposure (DA) dataset

Figure 7 shows the AUC values obtained by applying EPheClass 
to the antibiotics exposure dataset. As with the other cohorts, we 
evaluated model performance across different numbers of selected 
features (NSF), ranging from 2 to 40. Detailed score tables for each 
evaluated model are provided in Supplementary Table S24, 25.
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TABLE 6  Evaluation metrics used for the ensembles: F1 score (f1), precision (p), recall (r), accuracy (acc), and area under the ROC curve (roc_auc). The 
test set scores of the IBD dataset were averaged over different numbers of features, ranging from 6 to 38.

Dataset Algorithm f1 p r acc roc_auc

IBD

DES-C ensemble 0.857 0.835 0.880 0.778 0.792

DES-P ensemble 0.854 0.865 0.844 0.783 0.809

KNORA-E ensemble 0.855 0.850 0.860 0.780 0.797

KNORA-U ensemble 0.859 0.869 0.850 0.790 0.802

TABLE 7  F1 score (f1), precision (p), recall (r), accuracy (acc), and area 
under the ROC curve (roc_auc) for the best algorithm on average, DES-P, 
and its performance with different numbers of features on the test set 
for the IBD dataset. Only the three best number of features are shown, 
with a small number ordered from lowest to highest NSF.

Dataset NSF f1 p r acc roc_auc

IBD

26 0.866 0.890 0.844 0.804 0.859

34 0.885 0.883 0.886 0.826 0.863

38 0.884 0.899 0.870 0.828 0.871

Figure 7A shows that the ensemble models consistently 
outperform the base classifiers under cross-validation. In 
contrast, Figure 7B shows that performance on the test 
set is more variable, especially for very small feature sets. 
However, performance stabilises with more features. The paired 
Venkatraman test (Venkatraman, 1996) revealed statistically 
significant differences between the ensembles and individual 
models in nearly all cross-validation cases. On the test set, 
however, only a minority of comparisons showed significant
differences.

Table 8 reports the averaged test performance for the ensemble 
models across all tested feature sizes. DES-P achieved the highest 
average AUC and was thus selected as the reference model 
for further analysis. The full version of this table, including 
the averaged test set AUC values of the base models, can 
be found in Supplementary Table S26.

Table 9 summarises the top three performing feature counts 
on the test set using the DES-P ensemble. As there was very 
little variation in the AUC between the three best models, 
regardless of the NSF, the model with the fewest features 
was chosen. Consequently, the model performed best with just 
22 features, demonstrating the effectiveness of dimensionality
reduction.

As in the other datasets, we also explored larger feature sizes 
(from 100 to 1,500) and found that both cross-validation and test 
AUC stabilised beyond approximately 100 features. Full plots are 
available in the Supplementary Figure S4.

The main goal for the antibiotic exposure dataset was to 
demonstrate the versatility of the pipeline. Therefore, no additional 
analyses on data partitions or the impact of augmentation were 
performed, as the results obtained with previous evaluations 
provided enough information. 

4 Discussion and conclusion

This work proposes a curated pipeline for classifying phenotypes 
with 16S rRNA gene sequenced samples. The pipeline promotes 
reproducibility and reduces computational costs through feature 
selection. The ensemble models achieved the best results for all 
datasets and subsets, based on a trade-off between high scores and 
low target number of features, as shown in Figure 4.

This evaluation is based solely on objective data, using the AUC 
value plots, the paired and unpaired Venkatraman tests, and the 
comparison of the multiple performance metrics. 

4.1 Periodontal disease (PD) dataset

Several works in the literature have addressed the prediction of 
periodontal disease in the oral cavity. However, as shown in Table 10, 
they have not followed a rigorous procedure to perform a reliable 
and accurate prediction. Failure to meet the basic requirements 
for building adequate predictive models, including sufficiently 
large sample size, data set splitting and cross-validation, and an 
adequate number of features, means that the results cannot be 
considered valid (Kuhn and Johnson, 2013), making them unreliable 
and incomparable to ours.

When constructing predictive models, it is crucial to use 
sufficiently large and balanced datasets to enable proper learning and 
generalisation. Table 10 shows that the works mentioned either used 
highly unbalanced data (Narita and Kodama, 2022; Na et al., 2020) 
or datasets that were not large enough (Lundmark et al., 2019; Narita 
and Kodama, 2022; Chen et al., 2021). EPheClass utilises considerably 
larger datasets (314P - 483H for saliva and 1298P - 999H for plaque) 
and even performs data augmentation to ensure class balance. 

The relevance of the number of features used should not be 
overlooked, as an excessive amount can result in overly complex 
models. None of the studies provided a clear indication of the 
number of features used (Lundmark et al., 2019; Narita and Kodama, 
2022; Chen et al., 2021; Na et al., 2020). However, Na et al. (2020) 
reported that they performed feature selection, which resulted in 
improved outcomes. In contrast, EPheClass employs between 2 and 
15 features, with the optimal score achieved using 13 features for 
saliva and 13 for plaque.

To ensure reliable results and avoid overfitting, models must 
undergo evaluation through cross-validation and the use of real, 
unseen data. Neither Lundmark et al. (2019) nor Narita and 
Kodama (2022) employed cross-validation or divided the dataset 
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FIGURE 7
Evolution of the AUC as a function of the number of selected features (NSF) for different models applied to the DA dataset. Models were analysed using
(A) cross-validation and (B) the test set. Models included RF, SVM, MLP, kNN, XGBoost, KNORA-E, KNORA-U, DES-P, and DES-C.

TABLE 8  Evaluation metrics used for the ensembles: F1 score (f1), precision (p), recall (r), accuracy (acc), and area under the ROC curve (roc_auc). The 
test set scores of the DA dataset were averaged over different numbers of features, ranging from 2 to 15.

Dataset Algorithm f1 p r acc roc_auc

DA

DES-C ensemble 0.686 0.684 0.690 0.756 0.820

DES-P ensemble 0.683 0.694 0.673 0.760 0.831

KNORA-E ensemble 0.687 0.684 0.692 0.757 0.823

KNORA-U ensemble 0.694 0.699 0.689 0.766 0.826

TABLE 9  F1 score (f1), precision (p), recall (r), accuracy (acc), and area 
under the ROC curve (roc_auc) for the best algorithm on average, DES-P, 
and its performance with different numbers of features on the test set 
for the DA dataset. Only the three best number of features are shown, 
ordered from lowest to highest NSF.

Dataset NSF f1 p r acc roc_auc

DA

22 0.814 0.817 0.811 0.858 0.923

31 0.865 0.872 0.858 0.897 0.942

40 0.858 0.858 0.858 0.891 0.943

into training and testing sets. Na et al. (2020) exclusively employed 
cross-validation, while Chen et al. (2021) utilised only one training 
set and one test set. In contrast, EPheClass performs both data 
splitting and cross-validation. To make valid comparisons between 
studies, it is important to ensure that they meet these minimum
criteria.

The studies achieved high scores, with Lundmark et al. (2019) 
obtaining an accuracy of 79.52%, Narita and Kodama (2022) with a 
higher accuracy of 88.7%, a recall of 67%, precision of 80% and an F1 
score of 72.7%, Na et al. (2020) with a high F1 score of 90.5% and an 
accuracy of 85.3%, and Chen et al. (2021) with a high AUC of 91.8%. 
However, as these studies do not meet the basic criteria mentioned 
earlier, their scores cannot be directly compared to ours.

Furthermore, Chen et al. (2021) achieved a higher AUC by using 
a periodontitis-specific index on subgingival samples, which is not 
applicable to other pathologies and mixes features from different 
regions of the 16S rRNA gene. In contrast, EPheClass can predict any 
polymicrobial pathology. Our pipeline meets the basic conditions 
and achieves with DES-P for the PD dataset an average test AUC of 
0.931, an F1 score of 0.892, a precision of 0.891, a recall of 0.895, and 
an accuracy of 0.903, using only 9 to 13 selected features.

In our PD dataset (Figures 4, 5), saliva subsets with and 
without gingivitis (PGD_s vs PD_s) performed similarly, as did 
plaque subsets (PGD_p vs PD_p). Although gingivitis, which is 
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TABLE 10  Comparison of EPheClass with other works diagnosing periodontal disease. P, periodontitis; H, healthy; NSF, number of selected features; DS, 
Data split; CV, cross-validation.

Work Collection site Dataset size NSF DS and CV f1 p r acc roc_auc

Lundmark et al. (2019) Saliva 66P - 48H Unspecified No - - - 79.52% -

Narita and Kodama (2022) Saliva 12P - 41H Unspecified No 72.7% 80% 67% 88.7% -

Na et al. (2020) Supragingival 210P - 62H Unspecified Only CV 90.5% - - 85.3% -

Chen et al. (2021)a Subgingival 123P - 96H Unspecified Only DS - - - - 91.8%

EPheClass (ours)
Saliva 314P - 483H 13 Yes 91.3% 88.1% 94.7% 92.9% 97.3%

Plaqueb 1298P - 369Hc 13 Yes 90.3% 91.8% 88.9% 85.2% 89.7%

aModel specific for supragingival periodontitis, not generalizable.
bSubgingival + supragingival samples.
cSize of the original dataset. An additional 630 augmented healthy samples were added to the training set.

recognised as an early stage of periodontal involvement, adds 
heterogeneity and classification difficulty, models generalise well 
across all subsets. Moreover, differences in overall performance can 
be noted depending on the site of sample collection. Saliva samples 
yielded better results than plaque, especially with fewer features 
(Figures 4, 5). Specifically, DES-P reached an AUC of 97.3% in saliva 
samples and 89.7% in plaque samples, using only 13 features.

Therefore, it appears that saliva samples contain sufficient 
information to accurately classify periodontitis. Furthermore, 
satisfactory results can still be attained even when gingivitis is 
present. All subsets demonstrate a high degree of predictive capacity 
with few features, highlighting the positive impact of feature 
selection.

Given that all ensembles performed similarly according to 
the Venkatraman test, DES-P was selected as the representative 
ensemble, as it achieved the highest average test score across feature 
numbers. Table 3 showed that ensembles were the best models for 
all PD subsets. Table 4 confirmed that the DES-P model performed 
strongly and stably on the test data, achieving peak AUC values 
ranging from 0.895 to 0.973, depending on the subset and the 
number of features. 

4.2 Inflammatory bowel disease (IBD) 
dataset

We also evaluated the pipeline on an IBD dataset, where the 
DES-P ensemble demonstrated strong predictive performance on 
the test set while using only 26 features. These results are better 
than those obtained by other studies using the same dataset to 
classify this disease using different approaches, as shown in Table 11. 
Asgari et al., 2018 proposed Micropheno to classify phenotypes 
using k-mer abundance tables and RF models. Unal et al. (2023) 
evaluated different machine learning algorithms, including RF, 
SVM, and kNN, to predict diseases using k-mer abundance tables. 
Zhao et al. (2021) proposed Read2Pheno, a phenotype classifier 
that uses Convolutional Neural Networks (CNN), Recurrent Neural 
Networks (RNN), and attention mechanisms to individually classify 
each sequence in the samples. As a final comparison, Syama et al. 

(2023) built graphs, considering each metagenomic sample as a node 
in the graph and capturing the relationship between the samples 
using a proximity measure, and used them as input for a boosting 
GraphSAGE model that predicts the status of a sample as sick 
or healthy.

These tools proposed in the literature achieve results that, in 
some cases, seem comparable to or even surpass our own. However, 
we consider ours to be better because, unlike our proposal, these 
tools use thousands of features. The use of parsimonious models 
with few features is crucial from a clinical point of view (Steyerberg, 
2009), as simpler models facilitate the interpretability of the results, 
avoid overfitting, and increase the clinical applicability. In general, 
overly complex models should be avoided (Moons et al., 2015). In 
addition, they do not follow some of the key steps described earlier 
in this section to achieve a reliable prediction.

In more detail, Asgari et al., 2018 used 4,096 features, 
corresponding to 6-mers, and only seem to evaluate the classifier 
with cross-validation, while we provide both the cross-validation 
and test set results. Our cross-validation results outperform theirs. 
Unal et al. (2023) also used 4,096 features, did not consider class 
imbalance, and only performed data splitting, without showing 
the cross-validation results. Zhao et al. only used 442 out of the 
1,359 samples for training and testing, which reduces the diversity 
and variability of the data. Moreover, the only metric shown is 
the accuracy. Finally, Syama et al. (2023) do not seem to perform 
any cross-validation, hyperparameter tuning or feature selection. 
While they use 1,250 features, we achieve highly promising scores 
with only 26 features. Furthermore, the F1 scores of the traditional 
models evaluated in their study show the neglected class imbalance 
(e.g., F1 score of 0.57 with RF), which is recognised and not 
taken into account in the evaluation. They achieve higher scores 
than our proposal, but with an increased number of features and 
without taking into account the strong class imbalance. We decided 
to evaluate our proposal under their conditions to see if such 
higher scores could be achieved. Without balanced classes, cross-
validation, hyperparameter tuning, and feature selection techniques, 
we achieved even better results than those shown by Syama et al. 
(2023). The DES-P ensemble scored 1 on all metrics, both on 
the test set and the training set. Nevertheless, the criteria already 
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TABLE 11  Comparison of EPheClass with other works for the diagnosis of IBD. D: IBD. H, healthy; NSF, number of selected features; DS, data split; CV, 
cross-validation.

Work Dataset size NSF DS and CV f1 p r acc roc_auc

Asgari et al. (2018)a 731D - 628H 4,096 Only CV 76% 76% 76% - -

Unal et al. (2023) 1,023D - 336H 4,096 Only DS 76.5% 76.6% - 76.5% 82.1%

Zhao et al. (2021) 210D - 210H Unspecified Yes - - - 83.3% -

Syama et al. (2023) 1,023D - 336H 1,250 Only DS 95% - - 95% 93%

EPheClass (ours) 1,023D - 336Hb 26 Yes 86.6% 89.0% 84.4% 80.4% 85.9%

aScores obtained after cross-validation, in contrast to all other rows showing the test set results.
bSize of the original dataset. An additional 480 augmented healthy samples were added to the training set.

TABLE 12  Performance benchmark of EPheClass using DES-P compared to existing methods for PD and IBD diagnosis, and for antibiotic exposure 
detection. NSF, number of selected features; DS, data split; CV, cross-validation.

Dataset Work NSF DS and CV f1 p r acc roc_auc

PD

Mreyoud et al. (2022) 10,577 Only DS 90.5% 89.5% 91.4% 92.5% 96.7%

Oh and Zhang (2020) 10,577 Yes 81.2% 81.7% 80.8% 85.13% 87.1%

EPheClass (ours) 13 Yes 91.3% 88.1% 94.7% 92.9% 97.3%

IBD

Mreyoud et al. (2022) 9,511 Only DS 85.5% 80.1% 90.8% 76.9% 72%

Oh and Zhang (2020) 9,511 Yes 81.8% 84.4% 79.4% 73.5% 71.5%

EPheClass (ours) 26 Yes 86.6% 89% 84.4% 80.4% 85.9%

DA

Mreyoud et al. (2022) 3,901 Only DS 77.5% 91.5% 67.2% 84.5% 88.6%

Oh and Zhang (2020) 3,901 Yes 82.2% 85.9% 78.8% 86.8% 92.4%

EPheClass (ours) 22 Yes 81.4% 81.7% 81.1% 85.8% 92.3%

mentioned for reliable and accurate classifiers should be followed 
in order to avoid overfitting and to achieve proper learning and
generalisation. 

4.3 Antibiotic exposure (DA) dataset

Unlike the PD and IBD datasets, the DA dataset was not included 
with the aim of comparing our results against existing studies 
addressing the same classification task. Instead, it was used mainly 
for benchmarking purposes, allowing us to test and compare our 
pipeline against other existing phenotype classifiers. This dataset 
served to further demonstrate the pipeline’s versatility in handling 
different prediction problems. 

4.4 Benchmarking

Additionally, we have benchmarked other phenotype classifier 
tools to compare their performance with our pipeline using 
the test sets of the PD, IBD, and DA datasets (see Table 12). 

These tools are MegaD (Mreyoud et al., 2022), which employs 
convolutional neural networks to classify microbiome data, and 
DeepMicro (Oh and Zhang, 2020), which applies autoencoder-
based representation learning. For MegaD, we used the default 
experimental configuration provided. In the case of DeepMicro, 
although it was designed to perform feature reduction via 
autoencoders, we were unable to run the pertinent code. Therefore, 
we evaluated only the classifier (SVM), which still performed well in 
their results.

While all methods produced competitive results, EPheClass 
stands out by achieving comparable or superior performance 
while using dramatically fewer features, fewer than 30 in all cases, 
compared to the thousands used by other tools. This emphasises the 
parsimony and interpretability of our pipeline, making it especially 
suitable for clinical settings.

To the best of our knowledge, no other polymicrobial disease 
classification pipeline has achieved such promising results with only 
a few features. This is due to the combination of ASV abundance 
filtering and Recursive Feature Elimination (RFE) to reduce data 
dimensionality, as well as the use of dynamic ensemble models for 
classification. 
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4.5 Generalisation and limitations of the 
pipeline

We have proven that the pipeline performs well in classifying 
different phenotypes, i.e., periodontal disease, IBD, and antibiotic 
exposure. This robustness was further supported by additional 
experiments using multiple data partitions, extended feature sets 
of up to 1,500 features, and different class imbalance management 
strategies (augmentation, no augmentation, and downsampling). 
This highlights the generalisability of the approach to other study 
niches and different sample types.

However, our pipeline’s ability to accurately classify phenotypes, 
as well as any other classifier from abundance tables, can be 
influenced by the sequencing depth of the data. Each training 
sample must include a minimum number of sequences, which 
depends on the sample type and the quality of the sequencing 
process. A greater depth increases the ability to distinguish 
between classes.

In conclusion, the proposed pipeline achieved a balance 
between high scores and a smaller number of features through 
feature selection and dynamic ensembles. Additionally, it ensures 
reproducibility of results and reduces computational costs by 
significantly reducing data dimensionality. The results are now 
more comprehensible, allowing for the identification of specific 
bacteria that may cause or influence the disease under study. 
Moreover, our findings exceed those of prior studies that did 
not employ a rigorous methodology. We are convinced that this 
pipeline is capable of accurately classifying any heterogeneous 
polymicrobial disease dataset and producing reliable and 
representative results.
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